979 resultados para 114-700
Resumo:
Vorbesitzer: Benediktinerabtei Břevnov
Resumo:
Neumann, Franz L.: "Labor Under National Socialism", 19.03.1942. Typoskript, 66 Blatt; Löwenthal, Leo: "Notes on a Study in News Commentators" 23.01.1943; "Notes on a Study on News Commentators". Typoskript, 34 Blatt; "Treatment of Selected New Topics in News and News Commentator Programs". Typoskript, 53 Blatt; Forschungsprojekte und Memoranden zur Umgestaltung Nachkriegs-Deutschlands, besonders zur Umerziehung, 1942-1949; 1. "Project To Survey Present German Educational Practices in the Field of Social Sciences as a Means for Democratization. Supplementary Statements" 28.02.1949; a) Teilstück, Typoskript, 1 Blatt; b)-f) Typoskripte, zum Teil mit eigenhändigen Korrekturen von Max Horkheimer, 21 Blatt; g) Eigenhändige Notizen von Max Horkheimer, 1 Blatt; h) Eigenhändige Notizen von Theodor W. Adorno, 1 Blatt; 2. Marcuse, Herbert: 2 Briefe mit Unterschrift an Max Horkheimer und Beil, ohne Ort, 1949; 1 Brief mit Unterschrift von Max Horkheimer, Pacific Palisades, 25.02.1949; 3. "German Project" a) Typoskript mit handschriftlichen Korrekturen, 12 Blatt; b) Typoskript mit eigenhändigen Korrekturen von Max Horkheimer, 12 Blatt; c) Typoskript mit eigenhändigen Korrekturen von Max Horkheimer, 5 Blatt; d) Eigenhändige Notizen von Max Horkheimer, 1 Blatt; 4. Emhardt, K.H.: 1 Briefabschrift an Max Horkheimer, München, 20.06.1948, 1 Blatt; 5. "Untersuchunge über die Durchführung und das Ergebnis der politischen Säuberung an den Hochschulen der Westzone" a) Typoskript, 4 Blatt; b) Typoskript mit handschriftlichen Korrekturen, 2 Blatt; 6. Über Antisemitismus und politische Fragen im Nachkriegsdeutschland. Auszug aus einem Brief von "F.L.", 1949, Typoskirpt, 9 Blatt; 7. "Liste of Signers of the 1933 manifesto". 1 Blatt; 8. Marcuse, Herbert: Über Probleme der Demokratisierung und des Chauvinismus im Nachkriegsdeutschland. Teilstück eines Typoskripts, 4 Blatt, mit einem eigenhändigen Brief mit Unterschrift an Leo Löwenthal, ohne Ort, 25.11.1948, 1 Blatt;
Resumo:
The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.
Resumo:
Fil: Abate, Sandro.
Resumo:
The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.
Resumo:
Nearly complete Paleogene sedimentary sequences were recovered by Leg 114 to the subantarctic South Atlantic. Silicoflagellate assemblages from the Paleogene and immediately overlying lower Neogene from Sites 698 (Northeast Georgia Rise), 700 (East Georgia Basin), 702 (Islas Orcadas Rise), and 703 (Meteor Rise) were examined. The described assemblage from Hole 700B represents the most complete yet described from the Paleocene, encompassing planktonic foraminifer Zones Plb (upper part) through P4 and Subchrons C25N to C23N. All lower Eocene sediments are barren as a result of diagenesis, except for a single sample from Hole 698A. Middle Eocene silicoflagellates described from Hole 702B range in age from early middle Eocene (P10) to late Eocene (PI5), with correlations to Subchrons C21N to C18N. Hole 703A contains late Eocene through early Miocene assemblages, with paleomagnetic control from Subchrons C16R to C6AAN. Leg 114 biosiliceous sequences contain exceptionally diverse assemblages of silicoflagellates. Approximately 155 species and separate morphotypes are described from the Paleogene and earliest Neogene. New taxa described from Leg 114 sediments include Bachmannocena vetula n. sp., Corbisema animoparallela n. sp., Corbisema camara n. sp., Corbisema constricta spinosa n. subsp., Corbisema delicata n. sp., Corbisema hastata aha n. subsp., Corbisema praedelicata n. sp., Corbisema scapana n. sp., Corbisema triacantha lepidospinosa n. subsp., Dictyocha deflandreifurtivia n. subsp., Naviculopsis biapiculata nodulifera n. subsp., Naviculopsis cruciata n. sp., Naviculopsis pandalata n. sp., Naviculopsis primativa n. sp., and Naviculopsis trispinosa eminula n. subsp. Taxonomic revisions were made to the following taxa: Corbisema constricta constricta emended, Corbisema disymmetrica crenulata n. comb., Corbisema jerseyensis emended, and Distephanus antarcticus n. comb. Silicoflagellate assemblages from the Paleogene and earliest Neogene of Holes 698A, 699A, 700B, 702B, and 703A are the basis of a silicoflagellate zonation spanning the interval from 63.2 to 22.25 Ma. Silicoflagellate zones recognized in this interval include the Corbisema hastata hastata Zone, Corbisema hastata aha Zone, Dictyocha precarentis Zone, Naviculopsis constricta Zone, Naviculopsis foliacea Zone, Bachmannocena vetula Zone, Dictyocha grandis Zone, Naviculopsis pandalata Zone, Naviculopsis constricta-Bachmannocena paulschulzii Zone, Bachmannocena paulschulzii Zone, Naviculopsis trispinosa Zone with subzones a and b, Corbisema archangelskiana Zone, Naviculopsis biapiculata Zone, Distephanus raupii Zone, Distephanus raupii-Corbisema triacantha Zone, and Corbisema triacantha mediana Zone.
Resumo:
Campanian-Maestrichtian planktonic foraminifers were examined from Sites 698 (2128 m water depth) and 700 (3611 m water depth) on the Northeast Georgia Rise (southern South Atlantic, 51°S). Site 698 penetrated 72.5 m of Campanian-Maestrichtian chalk and limestone with only 18.2% recovery, whereas Site 700 recovered 66.8% of a 152.7-m section of Coniacian-Maestrichtian limestone. Preservation of planktonic foraminifers from both sites is moderate in Maestrichtian samples, but worsens with increasing depth in the Campanian. The Northeast Georgia Rise planktonic foraminifers are typical of Late Cretaceous Austral Province faunas described from other southern high-latitude sites; species diversity is low and the assemblages are dominated by species of Heterohelix, Globigerinelloides, Hedbergella, and Archaeoglobigerina. Five species, including Globigerinelloides impensus Sliter, Archaeoglobigerina australis Huber, Archaeoglobigerina mateola Huber, Hedbergella sliteri Huber, and Rugotruncana circumnodifer (Finlay), are considered to be endemic to the Austral Province. Formation of a cool temperate water mass in the circum-Antarctic region, resulting from the final breakup of the Gondwana continents, may have led to increased provincialism of the Austral Province planktonic foraminifers during Campanian-Maestrichtian time. Magnetobiostratigraphic correlation of eight planktonic foraminifer datum events at Hole 700B with ages determined for datums at ODP Leg 113 Holes 689B and 690C (Maud Rise, 65°S) demonstrates regional synchroneity of first and last occurrences within the Austral Province. As was observed at the Maud Rise, several keeled and nonkeeled species previously thought to have been restricted to warmer low-latitude regions first occur later at the Northeast Georgia Rise than at the low-latitude sites. The causes for high-latitude diachroneity among these immigrant species are not clear; neither oxygen and carbon isotope data from the Maud Rise sites nor calcareous nannoplankton distributions for the southern South Atlantic region show conspicuous changes that correlate to the delayed first occurrences.
Resumo:
A paleomagnetic study was made of 12 samples of trachytic basalt from the base of ODP Hole 698A on the Northeast Georgia Rise (southwest Atlantic) and four samples of andesitic basalt and nine samples of volcanic breccia from the base of ODP Hole 703A on the Meteor Rise (southeast Atlantic). The magnetic intensities of the Hole 703A samples are anomalously low, possibly reflecting alteration effects. The mean magnetic intensity of the Hole 698A samples is high, and compatible with the model of Bleil and Petersen (1983) for the variation of magnetic intensity with age in oceanic basalts, involving progressive low-temperature oxidation of titanomagnetite to titanomaghemite for some 20 m.y. followed by inversion to intergrowths of magnetite and other Fe-Ti oxides during the subsequent 100 m.y. These results support the interpretation of the Hole 698A basalts as true oceanic basement of Late Cretaceous age rather than a younger intrusion. Well-defined stable components of magnetization were identified from AF and thermal demagnetization of the Hole 698A basalts, and less well-defined components were identified for the Hole 703A samples. Studies of the magnetic homogeneity of the Hole 698A basalts, involving harmonic analysis of the spinner magnetometer output, indicate the presence of an unevenly distributed low-coercivity component superimposed on the more homogeneous high-coercivity characteristic magnetization. The former component is believed to reside in irregularly distributed multidomain magnetite grains formed along cracks within the basalt, whilst the latter resides in more uniformly distributed finer magnetic grains. The inclination values for the high-coercivity magnetization of five Hole 698A basalt samples form an internally consistent set with a mean value of 59° ± 5°. The corresponding Late Cretaceous paleolatitude of 40° ± 5° is shallower than expected for this site but is broadly compatible with models for the opening of the South Atlantic involving pivoting of South America away from Africa since the Early Cretaceous. The polarity of the stable characteristic magnetization of the Site 698 basalts is normal. This is consistent with their emplacement during the long Campanian to Maestrichtian normal polarity Chron C33N.
Resumo:
Ocean Drilling Program Site 704 in the subantarctic South Atlantic was drilled to investigate the response of the Southern Ocean to climatic and Oceanographic developments during the late Neogene. Stable oxygen and carbon isotopes of fine-fraction (<63 µm) carbonate were analyzed to supplement similar analyses of benthic and planktonic foraminifers. The fine fraction is generally composed primarily of coccoliths, and isotopic analyses of the fine fraction were made to complement the foraminiferal analyses. The isotopic curves thus generated suggest paleoceanographic changes not recognizable by the use of benthic and planktonic foraminifers alone. The global Chron 6 carbon isotope shift, found at 253-244 mbsf (6.39-6.0 Ma) at Site 704 in the planktonic and benthic record, is seen in the fine-fraction d13C record as a gradual decrease from 255 mbsf (6.44 Ma) to 210 mbsf (4.24 Ma). At 170 mbsf, mean d18O values of Neogloboquadrina pachyderma increase by 0.6 per mil-0.7 per mil (Hodell and Ciesielski, 1991, doi:10.2973/odp.proc.sr.114.150.1991), reflecting decreased temperature and increased continental ice volume. Accumulation rates increase by 3.3 times above this depth (which corresponds to an age of 2.5 Ma), suggesting increased upwelling and biologic productivity. Carbon isotopic values of fine-fraction carbonate decrease by about 1.5 per mil at 2.6 Ma; however, no change is recorded in the d13C of N. pachyderma. The fine-fraction d13C shift slightly precedes an average l per mil decrease in d13C in benthic foraminifers. The cause of the benthic d13C shift (most likely due to a change in deep water circulation; Hodell and Ciesielski, 1991) is probably not directly related to the fine-fraction shift. The fine-fraction shift is most likely caused by (1) a change in the upwelling to productivity ratio at this site, with increased upwelling bringing lighter carbon to surface waters, more productivity, and higher sedimentation rates and (2) a change in the particle composition of the fine fraction. The increased upwelling is probably due to a northward migration of the Antarctic Polar Front to a position nearer Site 704.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.