998 resultados para 057-1
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.