910 resultados para 010109 Ordinary Differential Equations Difference Equations and Dynamical Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Кремена В. Стефанова - В тази статия са разрешени някои нелинейни интегрални неравенства, които включват максимума на неизвестната функция на две променливи. Разгледаните неравенства представляват обобщения на класическото неравенство на Гронуол-Белман. Значението на тези интегрални неравенства се определя от широките им приложения в качествените изследвания на частните диференциални уравнения с “максимуми” и е илюстрирано чрез някои директни приложения.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumo indisponível.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of asymptotically almost periodic classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations which arise in the study of heat conduction in fading memory material is considered. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note is motivated from some recent papers treating the problem of the existence of a solution for abstract differential equations with fractional derivatives. We show that the existence results in [Agarwal et al. (2009) [1], Belmekki and Benchohra (2010) [2], Darwish et al. (2009) [3], Hu et al. (2009) [4], Mophou and N`Guerekata (2009) [6,7], Mophou (2010) [8,9], Muslim (2009) [10], Pandey et al. (2009) [11], Rashid and El-Qaderi (2009) [12] and Tai and Wang (2009) [13]] are incorrect since the considered variation of constant formulas is not appropriate. In this note, we also consider a different approach to treat a general class of abstract fractional differential equations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper establishes the existence and uniqueness of asymptotically almost automorphic mild solution to an abstract partial neutral integro-differential equation with unbounded delay. An example is given to illustrate our results. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd