975 resultados para viscous fingering
Resumo:
A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.
Resumo:
The Saffman-Taylor finger problem is to predict the shape and,in particular, width of a finger of fluid travelling in a Hele-Shaw cell filled with a different, more viscous fluid. In experiments the width is dependent on the speed of propagation of the finger, tending to half the total cell width as the speed increases. To predict this result mathematically, nonlinear effects on the fluid interface must be considered; usually surface tension is included for this purpose. This makes the mathematical problem suffciently diffcult that asymptotic or numerical methods must be used. In this paper we adapt numerical methods used to solve the Saffman-Taylor finger problem with surface tension to instead include the effect of kinetic undercooling, a regularisation effect important in Stefan melting-freezing problems, for which Hele-Shaw flow serves as a leading order approximation when the specific heat of a substance is much smaller than its latent heat. We find the existence of a solution branch where the finger width tends to zero as the propagation speed increases, disagreeing with some aspects of the asymptotic analysis of the same problem. We also find a second solution branch, supporting the idea of a countably infinite number of branches as with the surface tension problem.
Resumo:
Radial Hele-Shaw flows are treated analytically using conformal mapping techniques. The geometry of interest has a doubly-connected annular region of viscous fluid surrounding an inviscid bubble that is either expanding or contracting due to a pressure difference caused by injection or suction of the inviscid fluid. The zero-surface-tension problem is ill-posed for both bubble expansion and contraction, as both scenarios involve viscous fluid displacing inviscid fluid. Exact solutions are derived by tracking the location of singularities and critical points in the analytic continuation of the mapping function. We show that by treating the critical points, it is easy to observe finite-time blow-up, and the evolution equations may be written in exact form using complex residues. We present solutions that start with cusps on one interface and end with cusps on the other, as well as solutions that have the bubble contracting to a point. For the latter solutions, the bubble approaches an ellipse in shape at extinction.
Resumo:
We report on an accurate numerical scheme for the evolution of an inviscid bubble in radial Hele-Shaw flow, where the nonlinear boundary effects of surface tension and kinetic undercooling are included on the bubble-fluid interface. As well as demonstrating the onset of the Saffman-Taylor instability for growing bubbles, the numerical method is used to show the effect of the boundary conditions on the separation (pinch-off) of a contracting bubble into multiple bubbles, and the existence of multiple possible asymptotic bubble shapes in the extinction limit. The numerical scheme also allows for the accurate computation of bubbles which pinch off very close to the theoretical extinction time, raising the possibility of computing solutions for the evolution of bubbles with non-generic extinction behaviour.
Resumo:
We consider a model for thin film flow down the outside and inside of a vertical cylinder. Our focus is to study the effect that the curvature of the cylinder has on the gravity-driven instability of the advancing contact line and to simulate the resulting fingering patterns that form due to this instability. The governing partial differential equation is fourth order with a nonlinear degenerate diffusion term that represents the stabilising effect of surface tension. We present numerical solutions obtained by implementing an efficient alternating direction implicit scheme. When compared to the problem of flow down a vertical plane, we find that increasing substrate curvature tends to increase the fingering instability for flow down the outside of the cylinder, whereas flow down the inside of the cylinder substrate curvature has the opposite effect. Further, we demonstrate the existence of nontrivial travelling wave solutions which describe fingering patterns that propagate down the inside of a cylinder at constant speed without changing form. These solutions are perfectly analogous to those found previously for thin film flow down an inclined plane.
Resumo:
We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.
Resumo:
The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this selection of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.
Resumo:
The mathematical problem of determining the shape of a steadily propagating Saffman–Taylor finger in a rectangular Hele-Shaw cell is known to have a countably infinite number of solutions for each fixed surface tension value. For sufficiently large surface tension values, we find that fingers on higher solution branches are non-convex. The tips of the fingers have increasingly exotic shapes as the branch number increases.
Resumo:
This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.
Resumo:
We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ε = H/R≪1, where H is the upstream film thickness, and in terms of a Bond number ρgR3/(γH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ε = O(10-1), whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when ε ≤ O(10-2). The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as 0.45 where = ρgR2/γ ≥ 1.3, and the contact line is unstable to fingering when ≥ 0.56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when <0.56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line.
Resumo:
Similarity solutions for flow over an impermeable, non-linearly (quadratic) stretching sheet were studied recently by Raptis and Perdikis (Int. J. Non-linear Mech. 41 (2006) 527–529) using a stream function of the form ψ=αxf(η)+βx2g(η). A fundamental error in their problem formulation is pointed out. On correction, it is shown that similarity solutions do not exist for this choice of ψ
Resumo:
In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.
Resumo:
The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.
Resumo:
A crustal-scale shear zone network at the fossil brittle-to-viscous transition exposed at Cap de Creus, NE Spain evolved by coeval fracturing and viscous, mylonitic overprinting of an existing foliation. Initial fracturing led to mylonitic shearing as rock softened in ductilely deformed zones surrounding the fractures. Mylonitic shear zones widened by lateral branching of fractures from these shear zones and by synthetic rotation of the existing foliation between the fractures and shear zones. Shear zones lengthened by a combination of fracturing and mylonitic shearing in front of the shear zone tips. Shear zones interconnected along and across their shearing planes, separating rhomb-shaped lozenges of less deformed rock. Lozenges were subsequently incorporated into the mylonitic shear zones by widening in the manner described above. In this way, deformation became homogeneous on the scale of initial fracturing (metre- to decametre-scale). In contrast, the shear zone network represents localisation of strain on a decametre-length scale. The strength of the continental crust at the time of coeval fracturing and viscous shearing is inferred to have decreased with time and strain, as fracturing evolved to mylonitic shearing, and as the shear zones coalesced to form a through-going network subparallel to the shearing plane. Crustal strength must therefore be considered as strain- and scale-dependent.