969 resultados para vinyl bromide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of a study on vinyl bromide for the search for new far infrared (FIR) laser lines. As the pump source, we use a CW waveguide CO2 laser with a tunability of 290 MHz around each line in order to pump large offset vibrational transitions. As a consequence, we obtained 28 new FIR laser emissions; 24 of them have wavelengths greater than 500 mum and are, therefore, suitable to be used in high-field EPR spectroscopy, For each of the new lines, we give the wavelength, the offset of the pumping transition with respect to the center Frequency of the CO2 emission, the polarization relative to that of the pumping laser line, the operating pressure, and the relative intensity. We also present a catalog including data of all of the FIR laser lines observed from this molecule up to now.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A concise total synthesis of 11-O-methyldebenzoyltashironin is reported in which oxidative dearomatization-IMDA-RCM triad constitutes the key ring forming steps, while an unorthodox DIBAL-H mediated stereo- and regioselective reductive epoxide openings and implementation of the vinyl bromide-carbonyl equivalency concept were pivotal to the success of this endeavor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.

The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.

The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.

A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.

Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enantiopure cis-2,3-dihydrodiols, available from dioxygenase-catalysed cis-dihydroxylation of monosubstituted benzene substrates, have been used as synthetic precursors of the corresponding trans-3,4-dihydrodiols. The six-step chemoenzymatic route from cis-dihydrodiol precursors, involving acetonide, tetraol, dibromodiacetate and diepoxide intermediates, and substitution of vinyl bromide and iodide atoms, has been used in the synthesis of ten trans-dihydrododiol derivatives of substituted benzenes. The general applicability of the method has been demonstrated by its use in the synthesis of both enantiomers of the trans-1,2- and 3,4-dihydrodiol derivatives of toluene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reductive cyclisation of ail E-vinyl bromide with ail allylic acetate proceeds under palladium catalysis 10 give the 8-dehydropumiliotoxin skeleton, a potential advanced precursor to 8-deoxypumiliotoxin alkaloids. Control of the stereochemistry of the E-vinyl bromide precursor is achieved readily using the Kogen or Bruckner bromophosphonate reagents and the reductive cyclisation proceeds with retention of the vinyl bromide stereochemistry. The mechanism for the cyclisation involves an in situ conversion of the allylic acetate to ail allyl stannane followed by ail intramolecular Stille-type coupling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intramolecular Heck cyclisation of (E)-vinyl bromides leads to indolizidines, related to pumiliotoxin alkaloids, in which the stereochemistry of the trisubstituted double bond undergoes inversion. A cyclopropyl intermediate, which is believed to be responsible for the double bond inversion, has been intercepted by forcing an 'early' beta-hydride elimination on this species. The relative stereochemistry of this cyclopropyl intermediate determines the regioselectivity of the final beta-hydride elimination. In this case all three beta-hydride eliminations were stereochemically permitted, giving rise to a mixture of three isomeric products, differing in the position of a double bond. (Z)-Vinyl bromides were found to be less reactive than (E)-vinyl bromides, but on cyclisation gave the required conjugated diene, with inversion of the vinyl bromide stereochemistry, as the sole reaction product. This methodology will allow rapid stereoselective access to the diene-based pumiliotoxin alkaloids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel approach to diene based quinolizidines, using an intramolecular Heck reaction in which the vinyl bromide double bond undergoes inversion of configuration, is reported. These quinolizidines have previously been proposed as tentative structures for homopumiliotoxin alkaloids 233F and 235C. The mass spectral data of the synthetic materials were different to those of the natural products confirming that the original structures need to be revised. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure and mechanism of the title molecule are described. This crystal is orthorhombic, belonging to space group PC21/B with a=1,002 1(2) nm, b=1.483 0(3) nm, c=2.173 6(4) nm, V=3.230 39(2) nm(3), Z=2, D-c=1.80 g/cm(3), R=0.069 3. The structure was solved by direct method. The tin atom of the title compound exists in two distorted-trigonal-bipyramidal geometry, defined by two carbon, one bromide, one chloride and one oxygen atoms leading to a five-membered chelate ring. In the structure, the five-membered ring containing the intermolecular O-->Sn has a half chair conformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption behavior of polycations at ionic strengths (1) ranging from 0.001 to 0.1 onto silicon wafers was studied by means of ellipsometry, contact angle measurements and atomic force microscopy (AFM). Polycations chosen were bromide salts of poly(4-vinylpyridine) N-alkyl quaternized with linear aliphatic chains of 2 and 5 carbon atoms, QPVP-C2 and QPVP-C5, respectively. Under 1 0.001 the reduction of screening effects led to low adsorbed amounts of QPVP-C2 or QPVP-C5 (1.0 +/- 0.1 mg/m(2)), arising from the adsorption of extended chains. Upon increasing l to 0.1, screening effects led to conformational changes of polyelectrolyte chains ill Solution and to higher adsorbed amount values (1.9 +/- 0.2 mg/m(2)). Advancing contact angle theta(a) measurements performed with water drops onto QPVP-C2 and QPVP-C5 adsorbed layers varied from (45 +/- 2)degrees to (50 +/- 5)degrees, evidencing the exposure of both hydrophobic alkyl groups and charged moieties. The adsorption of lysozyme (LYZ) molecules to QPVP-C5 layers was more pronounced than to QPVP-C2 films. Antimicrobial effect of LYZ bound to QPVP-C2 or QPVP-C5 layers or to Si wafers was evaluated with enzymatic assays using Micrococcus luteus as Substrates. The adsorption behavior of QPVP-C2 and QPVP-C5 at the water-air interface was studied by means Of surface tension measurements. Only QPVP-C5 was able to reduce water Surface tension. Mixtures of LYZ and QPVP-C5 were more efficient in reducing Surface tension than pure LYZ solution, evidencing co-adsorption at liquid-air interface. Moreover, antimicrobial action observed for mixtures of LYZ and QPVP-C5 was more pronounced than that measured for pure LYZ. Hydrophobic interaction between LYZ and QPVP-C5 ill Solution seems to drive the binding and to preserve LYZ secondary structure. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to produce both adenosine and L-homocysteine and is a feedback inhibitor of S-adenosyl- L-methionine (SAM). Nucleoside analogues bearing an alkenyl or fluoroalkenyl chain between sulfur and C5' utilizing Negishi coupling reactions were synthesized. Palladium-catalyzed cross-coupling between the 5'-deoxy-5'-(iodomethylene) nucleosides and alkylzinc bromides gives analogues with the alkenyl unit. Palladium-catalyzed selective monoalkylation of 5'-(bromofluoromethylene)-5'-deoxy-adenosine with alkylzinc bromide afford adenosylhomocysteine analogues with a 6'-(fluoro)vinyl motif. The vinylic adenine nucleosides produced time-dependent inactivation of the S-adenosyl-L-homocysteine hydrolases. Stannydesulfonylation reaction is a critical step in the synthesis of E-fluorovinyl cytidine (Tezacitabine) a ribonucleoside reductase inhibitor with a potent anticancer activity. The synthesis involves the removal of the sulfonyl group by a radical-mediated stannyldesulfonylation reaction using tributyltin hydride. In order to eliminate the toxicity of tin, I developed a radical-mediated germyldesulonylation utilizing less toxic germane hydrides. Treatment of the protected (E)-5'-deoxy-5'-[(p-toluenesulfonyl)-methylene]uridine and adenosine derivatives with tributyl- or triphenylgermane hydride effected radical-mediated germyldesulfonylations to give 5'-(tributyl- or triphenylgermyl)methylene-5'-deoxynucleoside derivatives as single (E)-isomers. Analogous treatment of 2'-deoxy-2'-[(phenylsulfonyl)methylene]uridine with Ph3GeH afforded the corresponding vinyl triphenylgermane product. Stereoselective halodegermylation of the (E)-5'-(tributylgermyl)-methylene-5'-deoxy nucleosides with NIS or NBS provided the Wittig-type (E)-5'-deoxy-5'-(halomethylene) nucleosides quantitatively. Radical-mediated thiodesulfonylation of the readily available vinyl and (α-fluoro) vinyl sulfones with aryl thiols in organic or aqueous medium to provide a bench and environmentally friendly protocol to access (α-fluoro)vinyl sulfides were developed. Methylation of the vinyl or (α-fluoro)vinyl phenyl sulfide gave access to the corresponding vinyl or (α-fluoro)vinyl sulfonium salts. These sulfonium ions were tested as possible methyl group donors during reactions with thiols, phenols or amino groups which are commonly present in natural amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) with 2 mol% perfluoropropyl vinyl ether (PPVE) was exposed to γ-irradiation in vacuum at both 77 K and room temperature and the ESR spectra recorded. Both the main chain, CF2–C.F–CF2, and end chain, CF2C.F2 radicals were identified at both temperatures and their thermal stabilities measured. No radicals unique to the radiolytic cleavage at the PPVE units were observed at room temperature, either due to the low concentration of the comonomer or β-scission to form a chain end radical and a non-radical species. G-values for radical formation at room temperature and 77 K were found to be 0.93 and 0.16, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using Af-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90 were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt of NVP absorbed 40 of water. As the amount of NVP was increased from 30 to 50 wt , the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.