96 resultados para varistors
Resumo:
This paper describes the experimental and theoretical studies carried out on particulate composites consisting of BaTiO3, graphite, and rubber. It is shown that such composites exhibit a positive voltage coefficient of resistance beyond a certain voltage. A theoretical model developed to explain the observed V-R characteristics and their dependence on parameters of the composite like composition and grain size of the particles is also described. These composites seem to be useful as varistors with positive voltage coefficient of resistance and may find applications as voltage-regulating devices. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Sintered, polycrystalline ZnO ceramics with copper as the only additive exhibit highly nonlinear current‐voltage characteristics. Increasing nonlinearity index (α=4–45) with Cu concentration of 0.01–1 mol % is also variable with respect to ceramic processing methods. Incorporation of Cu in the ZnO lattice is indicated from the electron probe microanalysis and the photoluminescence spectra. Cu acceptors are compensated by holes in the grain boundary layers, whereas the concentration of intrinsic donors is higher in the grain interior. The presence of positive charges leads to thinning of the depletion region, resulting in nonlinear characteristics.
Resumo:
: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.
Resumo:
High nonlinearity coefficients of 60–150 are observed in the current‐voltage (I‐V) curves of the mixed phase ceramics formed by cosintering ZnO with spinel phases having large negative temperature coefficients (NTCs) in resistivity. The region of negative slope in the I‐V curves of the NTC ceramics is progressively made positive with ZnO phase content, wherein ZnO grains function as a built‐in resistor in series to the resistance of the NTC phase. High α depends on the optimum phase content of ZnO as much as its intrinsic conductivity. The studies indicate that the predominent contribution to power dissipation is by way of joule heating from the resistive component of the current.
Resumo:
Zinc Oxide doped only with Cu shows highly nonlinear I–V characteristics. Microstructural observations of these ceramics reveal the presence of extensive dislocation network. The transmission electron microscopy (TEM) indicates that the dislocations are impurity decorated which arise as a result of limited solubility of CuO in ZnO. It is envisaged that the depletion region is generated in the region containing the dislocations because of the presence of acceptor type traps.
Resumo:
The performance parameters e.g. non-linear coefficient (α) and breakdown electric field (Eb1mA/cm2) of ZnO based ceramic varistors were found to improve after the addition of 10 mol% MgO. The improvement in the varistor properties is examined by ac impedance spectroscopy technique in the frequency range (1 Hz–10 MHz) between temperature 25–250°C and understood in terms of differing contributions from the equivalent electrical circuit elements.
Resumo:
Stable and highly reproducible voltage-limiting characteristics have been observed at room temperature for polycrystalline ceramics prepared from donor-doped BaTiO3 solid solutions containing isovalent lattice substitute ions that lower the Curie point Tc. When the ambient temperature Ta is decreased such that Ta < Tc, the same ceramics show current-limiting behaviour. The leakage current, the breakdown voltage and the non-linear coefficient (α = 30−50) could be varied with grain-boundary layer (GBL) modifiers and postsintering annealing. The magnitude of the abnormally high dielectric constant (epsilon (Porson)r greater than, approximately 105) indicates the prevalence of GBL capacitance in these ceramics. Analyses of the current-voltage relations show that GBL conduction at Ta < Tc corresponds to tunnelling across asymmetric barriers formed under steady state Joule heating. At Ta > Tc, trap-related conduction gives way to tunnelling across symmetric barriers as the field strength increases.
Resumo:
It is possible to prepare low‐voltage varistors from the zinc antimony spinel Zn7Sb2O12 with breakdown voltages in the range of 3–20 V and nonlinearity coefficient α=7–15. The varistor property is due to the formation of high ohmic potential barriers at the grain boundary regions on low‐ohmic n‐type grain interiors of the polycrystalline samples. The method of preparation of the spinel, synthesized by coprecipitation followed by annealing under restricted partial pressures of oxygen, controls the mixed valence states for antimony, namely, Sb3+ and Sb5+. This is critical in attaining high nonlinearity and lower breakdown voltages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tin dioxide varistors doped with Coo, ZnO, Ta2O5 and Cr2O3 were prepared by the mixed oxide method. Temperature dependent impedance spectroscopy revealed two different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. We show that Cr2O3 improves the varistor properties, generating sites for the adsorption of O' and O at the grain boundary region. The O' and O defects are truly responsible for the barrier formation at the grain boundary interface. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The complete I-V characteristics of SnO(2)-based varistors, particularly of the Pianaro system SCNCr consisting in 98.9%SnO(2)+1%CoO+0.05%Nb(2)O(5)+0.05%Cr(2)O(3), all in mol%, have been seldom reported in the literature. A comparative study at low and high currents of the nonohmic behavior of SCNCr- and ZnO-based varistors (modified Matsuoka system) is proposed in this work. The SCNCr system showed higher nonlinearity coefficients in the whole range of measured current. The electrical breakdown field (E(b)) was twice as high for the SCNCr system (5400 V/cm) than for the ZnO varistor (2600 V/cm) due to a smaller average grain size of the former (4.5 mu m) with respect to the latter (8.5 mu m). Nevertheless, we consider that another important factor responsible for the high E(b) in the SCNCr system is the great number of electrically active interfaces (85%) as determined with electrostatic force microscopy (EFM). It was also established that the SCNCr system might be produced in disks of smaller dimensions than that of commercial ZnO-based product, with a 5.0 cm(-1) minimal area-volume (A/V) ratio. The SCNCr reached the saturation current in a short time because of the high resistivity of the grains, which is five times higher than that of the grains in ZnO-based varistors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
SnO2 nanoparticles doped with TiO2, CoO, Nb2O3 and Al2O3 were obtained in this work using the methods of coprecipitation and polymeric precursor. X Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the ceramic powders obtained. Their synterization capacity was determined by dilatometric studies. Sinterized samples of the system on study were also characterized electrically and microstructurally to determine their suitability as varistors.
Resumo:
The effect of Cr2O3 on the electrical properties of the multicomponent ZnO varistors was investigated using voltage-current curves and impedance spectroscopy. The structure and morphological modifications were analysed by X-ray diffraction and scanning electron microscopy, respectively. It was observed in samples with addition 0.1 mol% Cr2O3 that there was an improvement in the electrical properties of the varistors, but the increase in concentration had a deleterious effect on the potential barrier at the grain boundary. The excess Cr2O3 segregates at the grain-boundary region and increases the donor concentration, leading to a higher leakage current.