963 resultados para time-dependent irrecoverable deformation
Resumo:
Presented in this report is an investigation of the use of "sand-lightweight" concrete in prestressed concrete structures. The sand-lightweight concrete consists of 100% sand substitution for fines, along with Idealite coarse and medium lightweight aggregate and Type I Portland Cement.
Resumo:
In this thesis we focus on the analysis and interpretation of time dependent deformations recorded through different geodetic methods. Firstly, we apply a variational Bayesian Independent Component Analysis (vbICA) technique to GPS daily displacement solutions, to separate the postseismic deformation that followed the mainshocks of the 2016-2017 Central Italy seismic sequence from the other, hydrological, deformation sources. By interpreting the signal associated with the postseismic relaxation, we model an afterslip distribution on the faults involved by the mainshocks consistent with the co-seismic models available in literature. We find evidences of aseismic slip on the Paganica fault, responsible for the Mw 6.1 2009 L’Aquila earthquake, highlighting the importance of aseismic slip and static stress transfer to properly model the recurrence of earthquakes on nearby fault segments. We infer a possible viscoelastic relaxation of the lower crust as a contributing mechanism to the postseismic displacements. We highlight the importance of a proper separation of the hydrological signals for an accurate assessment of the tectonic processes, especially in cases of mm-scale deformations. Contextually, we provide a physical explanation to the ICs associated with the observed hydrological processes. In the second part of the thesis, we focus on strain data from Gladwin Tensor Strainmeters, working on the instruments deployed in Taiwan. We develop a novel approach, completely data driven, to calibrate these strainmeters. We carry out a joint analysis of geodetic (strainmeters, GPS and GRACE products) and hydrological (rain gauges and piezometers) data sets, to characterize the hydrological signals in Southern Taiwan. Lastly, we apply the calibration approach here proposed to the strainmeters recently installed in Central Italy. We provide, as an example, the detection of a storm that hit the Umbria-Marche regions (Italy), demonstrating the potential of strainmeters in following the dynamics of deformation processes with limited spatio-temporal signature
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The nuclear time-dependent Hartree-Fock model formulated in three-dimensional space, based on the full standard Skyrme energy density functional complemented with the tensor force, is presented. Full self-consistency is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit, ranging from spherical nuclei (16O and 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si, 178Os, 190W and 238U). Particular attention is paid to the spin-dependent terms from the central sector of the functional, recently included together with the tensor. They turn out to be capable of producing a qualitative change on the strength distribution in this channel. The effect on the deformation properties is also discussed. The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected. Calculations are compared to predictions from the (quasi)-particle random-phase approximation and experimental data where available, finding good agreement
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
Resumo:
We consider scalar perturbations in the time dependent Horava-Witten model in order to probe its stability. We show that during the nonsingular epoque the model evolves without instabilities until it encounters the curvature singularity where a big crunch is supposed to occur. We compute the frequencies of the scalar field oscillation during the stable period and show how the oscillations can be used to prove the presence of such a singularity.
Resumo:
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.
Resumo:
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the beneficial effect of antimalarial treatment on lupus survival in a large, multiethnic, international longitudinal inception cohort. Methods. Socioeconomic and demographic characteristics, clinical manifestations, classification criteria, laboratory findings, and treatment variables were examined in patients with systemic lupus erythematosus (SLE) from the Grupo Latino Americano de Estudio del Lupus Eritematoso (GLADEL) cohort. The diagnosis of SLE, according to the American College of Rheumatology criteria, was assessed within 2 years of cohort entry. Cause of death was classified as active disease, infection, cardiovascular complications, thrombosis, malignancy, or other cause. Patients were subdivided by antimalarial use, grouped according to those who had received antimalarial drugs for at least 6 consecutive months (user) and those who had received antimalarial drugs for <6 consecutive months or who had never received antimalarial drugs (nonuser). Results. Of the 1,480 patients included in the GLADEL cohort, 1,141 (77%) were considered antimalarial users, with a mean duration of drug exposure of 48.5 months (range 6-98 months). Death occurred in 89 patients (6.0%). A lower mortality rate was observed in antimalarial users compared with nonusers (4.4% versus 11.5%; P < 0.001). Seventy patients (6.1%) had received antimalarial drugs for 6-11 months, 146 (12.8%) for 1-2 years, and 925 (81.1%) for >2 years. Mortality rates among users by duration of antimalarial treatment (per 1,000 person-months of followup) were 3.85 (95% confidence interval [95% CI] 1.41-8.37), 2.7 (95% CI 1.41-4.76), and 0.54 (95% CI 0.37-0.77), respectively, while for nonusers, the mortality rate was 3.07 (95% CI 2.18-4.20) (P for trend < 0.001). After adjustment for potential confounders in a Cox regression model, antimalarial use was associated with a 38% reduction in the mortality rate (hazard ratio 0.62, 95% CI 0.39-0.99). Conclusion. Antimalarial drugs were shown to have a protective effect, possibly in a time-dependent manner, on SLE survival. These results suggest that the use of antimalarial treatment should be recommended for patients with lupus.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.