846 resultados para thick-films
Resumo:
Laponite-derived materials represent promising materials for optical applications. In this work, Eu(3+)- or Er(3+)-doped laponite xerogels and films were prepared from colloidal dispersion. Homogeneous, crack-free and transparent single layers were deposited on soda-lime substrates with a thickness of 10 mu m. Structural and spectroscopic properties were analyzed by thermal analyses, X-ray diffractometry, transmission electron microscopy, infrared spectroscopy, and luminescence spectroscopy. The addition of a rare earth ion to the laponite does not promote any changes in thermal stability or phase transition. Laponite clay was identified after annealing up to 500 degrees C, with a decrease in basal spacing when the annealing temperature is changed from 100 degrees C to 500 degrees C. Enstatite polymorphs and amorphous silicate phases were observed after heat treatment at 700 degrees C and 900 degrees C. Stationary and time-dependent luminescence spectra in the visible region for Eu(3+), and (5)D(0) lifetime are discussed in terms of thermal treatment and structural evolution. In the layered host, the Eu(3+) ions are distributed in many different local environments. However, Eu(3+) ions were found to occupy at least two symmetry sites, and the ions are preferentially incorporated into the crystalline enstatite for the materials annealed at 700 degrees C and 900 degrees C. A (5)D(0) lifetime of 1.3 ms and 3.1 ms was obtained for Eu(3+) ions in an amorphous silicate and crystalline MgSiO(3) local environment, respectively. Strong Er(3+) emission at the 1550 nm region was observed for the materials annealed at 900 degrees C, with a bandwidth of 44 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report here on the preparation of La2/3Sr1/3MnO3 magnetoresistive thick films on polycrystalline Al2O3 substrates by using the screen printing technique. It is shown that films can be obtained using high temperature sintering. While there is a reacted layer, this improves adhesion and is not too troublesome if the films are made thick enough. It is shown that PbO-B2O3-SiO2 glass additives allow sintering at lower temperatures and can be used to improve the mechanical stress of the films. However, it is found that glass concentrations large enough to significantly improve the film adherence result in a weak low field magnetoresistance probably because grains are coated with high resistivity material. Strategies to overcome these difficulties are discussed.
Resumo:
A careful analysis of the impedance response of SnO2 thick films under vacuum and air atmosphere is reported in the present work. The AC electrical resistance was analyzed and it was shown that it is highly frequency dependent. Different models and its equivalent circuit representation were proposed and carefully analyzed based on the microstructure features of the device. Basically, an interpretation of the frequency dependent resistance was proposed based on the fact that different grains characteristics and junctions exist. These different grains and junctions are the main source of resistance dependent feature. An equivalent circuit model, considering different grain sizes associated with different grain boundary junctions characteristics, was introduced so that a consistent interpretation of the results was possible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The deposition of thick film pastes by screen-printing is a relatively simple and convenient method to produce thicker layers with thickness up to 100 mum. In the present work, the barium titanate thick films were prepared from mechanically activated powders based on BaC03 and TiO2. After mixing, the powders were calcined at low temperature by slow heating and cooling rates. The thick films were deposited on to Al2O3 substrates through hybrid technology. The obtained films were fired at 850 degreesC together with electrode material (silver/palladium). The electrical properties of thick films: dielectric permittivity, dielectric losses, Curie temperature, hysteresis loop were reported. The obtained BT thick films can be applied in as multilayer capacitors or in gas sensor application. (C) 2003 Elsevier Ltd. All rights reserved.
SrBi2Ta2O9 ferroelectric thick films prepared by electrophoretic deposition using aqueous suspension
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol.% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). It was investigated the influence of the different dispersants in the surface properties of the powder by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by a 4 mA constant current, for 10 min, using two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit were carried out until reaching the desired thickness. After thermal treatment at temperatures ranging from 700 to 1000 degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy for the microstructure observation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The gap between the bulk materials and thin films can be filled with thick films suitably designed and appropriate processed. Thick films of complex system like lead-lanthanum-zirconium titanate (PLZT) is difficult to produce by simple solid-state reaction keeping compositional homogeneity and optimal grain size distribution. In the present work, PLZT thick films were fabricated by screen-printing technique from nanosized powders obtained through soft chemistry by polymeric precursor method. Thick film paste was obtained by mixing PLZT fine powders and organic vehicle. The upper and bottom electrodes based on Ag-Pd and functional component based on PLZT were screen-printed on alumina substrate and after that annealed in air atmosphere. The powder morphology, microstructure, dielectric and ferroelectric properties of 9.5/65/35 PLZT thick films were analysed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Barium titanate (BT) thick films were prepared from mechanically activated powders based on BaCO(3) and TiO(2). After homogenization and milling in a high-energy vibro mill, the powders were calcined at 700 degreesC for 2 h by slow heating and cooling rates. A thick film paste was prepared by mixing BT fine powders with small amount of low temperature sintering aid and organic binder. The thick films were screen-printed on alumina substrates electroded with Ag-Pd. The BT films were sintered at 850 degreesC for 1 h. The thickness was 25-75 mum depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate were investigated by SEM Results of dielectric property measurements are also reported. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). The influence of the different dispersants on the powder surface properties were investigated by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by electrophoretic deposition using a 4 mA constant current, for 10 min, with two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit was carried out until the desired thickness was obtained. After thermal treatment at temperatures ranging from 700 to 1000degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy.
Resumo:
Barium titanate thick films were prepared from mechanically activated powders based on BaCO 3 and TiO 2. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850°C for 1 hour. The thickness was 30-75 μm depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca1-xYbxCu2Oy form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)O-x and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO(2) = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO(2) = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO(2) = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi2Sr2Ca1-xYbxCu2Oy thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest T-c(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O-2, respectively.
Resumo:
Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.
Resumo:
In this paper we report on the growth of thick films of magnetoresistive La2/3Sr1/3MnO3 by using spray and screen printing techniques on various substrates (Al2O3 and ZrO2). The growth conditions are explored in order to optimize the microstructure of the films. The films display a room-temperature magnetoresistance of 0.0012%/Oe in the 1 kOe field region. A magnetic sensor is described and tested.