962 resultados para teorema di rappresentazione di Riesz spazio duale
Resumo:
Lo spazio duale V* di un K-spazio vettoriale V, con K = R, o C, è definito come l'insieme dei funzionali lineari e continui da V in K. Definendo su di esso le operazioni di somma tra funzionali lineari e di prodotto per scalare, V* acquisisce una struttura di K-spazio vettoriale che risulta molto utile. Infatti il suo studio permette di comprendere meglio le caratteristiche dello spazio V. A tal proposito interviene l'argomento che è oggetto dell'elaborato: il Teorema di Rappresentazione di Riesz. Diversi risultati sono raggruppati sotto questo nome, che deriva dal matematico ungherese Frigyes Riesz, e tutti permettono di caratterizzare chiaramente gli elementi del duale dello spazio a cui si riferiscono. Scopo della tesi è quello di presentare il teorema nelle sue varie forme a partire da una delle più elementari: quella relativa a spazi vettoriali finiti. Ripercorrendo via via le sue generalizzazioni si arriverà all'enunciato inerente allo spazio delle funzioni continue f da X in C che si annullano all'infinito, dove X è uno spazio di Hausdorff localmente compatto. Si vedrà inoltre un esempio di applicazione del teorema.
Resumo:
Questa tesi si prefigge lo scopo di dimostrare il teorema di Igusa. Inizia introducendo algebricamente i numeri p-adici e ne dà una rappresentazione grafica. Sviluppa poi un integrale definito dalla misura di Haar, invariante per traslazione e computa alcuni esempi. Utilizza il blow up come strumento per la risoluzione di alcuni integrali ed enuncia un'applicazione del teorema di Hironaka sulla risolubilità delle singolarità. Infine usa questi risultati per dimostrare il teorema di Igusa.
Resumo:
Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.
Resumo:
Il punto centrale della tesi è stato dimostrare il Teorema di Koebe per le funzioni armoniche. È stato necessario partire da alcuni risultati di integrazione in Rn per ricavare identità e formule di rappresentazione per funzioni di classe C2, introdurre le funzioni armoniche e farne quindi una analisi accurata. Tali funzioni sono state caratterizzate tramite le formule di media e messe in relazione con le funzioni olomorfe, per le quali vale una formula simile di rappresentazione.
Resumo:
Nella tesi vengono introdotte le varietà differenziabili per poter trattare un problema di immergibilità di varietà differenziabili. Viene data una dimostrazione di un teorema di Whitney nel caso di varietà differenziabili compatte. Il teorema stabilisce che per una varietà compatta di dimensione n esiste un embedding nello spazio euclideo di dimensione 2n+1. Whitney stesso ha migliorato questo risultato, dimostrando che una varietà differenziabile può essere immersa tramite un embedding nello spazio euclideo di dimensione 2n. Nella tesi vengono dati alcuni esempi di questo miglioramento del teorema.