852 resultados para technology-enhanced assessment
Resumo:
To learn complex skills, like collaboration, learners need to acquire a concrete and consistent mental model of what it means to master this skill. If learners know their current mastery level and know their targeted mastery level, they can better determine their subsequent learning activities. Rubrics support learners in judging their skill performance as they provide textual descriptions of skills’ mastery levels with performance indicators for all constituent subskills. However, text-based rubrics have a limited capacity to support the formation of mental models with contextualized, time-related and observable behavioral aspects of a complex skill. This paper outlines the design of a study that intends to investigate the effect of rubrics with video modelling examples compared to text-based rubrics on skills acquisition and feedback provisioning. The hypothesis is that video-enhanced rubrics, compared to text based rubrics, will improve mental model formation of a complex skill and improve the feedback quality a learner receives (from e.g. teachers, peers) while practicing a skill, hence positively effecting final mastery of a skill.
Resumo:
Paper presentation at the TEA2016 conference, Tallinn, Estonia.
Resumo:
The nature and characteristics of how learners learn today are changing. As technology use in learning and teaching continues to grow, its integration to facilitate deep learning and critical thinking becomes a primary consideration. The implications for learner use, implementation strategies, design of integration frameworks and evaluation of their effectiveness in learning environments cannot be overlooked. This study specifically looked at the impact that technology-enhanced learning environments have on different learners’ critical thinking in relation to eductive ability, technological self-efficacy, and approaches to learning and motivation in collaborative groups. These were explored within an instructional design framework called CoLeCTTE (collaborative learning and critical thinking in technology-enhanced environments) which was proposed, revised and used across three cases. The field of investigation was restricted to three key questions: 1) Do learner skill bases (learning approach and eductive ability) influence critical thinking within the proposed CoLeCTTE framework? If so, how?; 2) Do learning technologies influence the facilitation of deep learning and critical thinking within the proposed CoLeCTTE framework? If so, how?; and 3) How might learning be designed to facilitate the acquisition of deep learning and critical thinking within a technology-enabled collaborative environment? The rationale, assumptions and method of research for using a mixed method and naturalistic case study approach are discussed; and three cases are explored and analysed. The study was conducted at the tertiary level (undergraduate and postgraduate) where participants were engaged in critical technical discourse within their own disciplines. Group behaviour was observed and coded, attributes or skill bases were measured, and participants interviewed to acquire deeper insights into their experiences. A progressive case study approach was used, allowing case investigation to be implemented in a "ladder-like" manner. Cases 1 and 2 used the proposed CoLeCTTE framework with more in-depth analysis conducted for Case 2 resulting in a revision of the CoLeCTTE framework. Case 3 used the revised CoLeCTTE framework and in-depth analysis was conducted. The findings led to the final version of the framework. In Cases 1, 2 and 3, content analysis of group work was conducted to determine critical thinking performance. Thus, the researcher used three small groups where learner skill bases of eductive ability, technological self-efficacy, and approaches to learning and motivation were measured. Cases 2 and 3 participants were interviewed and observations provided more in-depth analysis. The main outcome of this study is analysis of the nature of critical thinking within collaborative groups and technology-enhanced environments positioned in a theoretical instructional design framework called CoLeCTTE. The findings of the study revealed the importance of the Achieving Motive dimension of a student’s learning approach and how direct intervention and strategies can positively influence critical thinking performance. The findings also identified factors that can adversely affect critical thinking performance and include poor learning skills, frustration, stress and poor self-confidence, prioritisations over learning; and inadequate appropriation of group role and tasks. These findings are set out as instructional design guidelines for the judicious integration of learning technologies into learning and teaching practice for higher education that will support deep learning and critical thinking in collaborative groups. These guidelines are presented in two key areas: technology and tools; and activity design, monitoring, control and feedback.
Resumo:
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification of this topic can provide a discovery experience for prospective secondary teachers and information technology students. Such experience can be extended to include a transition from a computationally driven conjecturing to a formal proof based on a number of simple yet useful techniques.
Resumo:
Strategies of scientific, question-driven inquiry are stated to be important cultural practices that should be educated in schools and universities. The present study focuses on investigating multiple efforts to implement a model of Progressive Inquiry and related Web-based tools in primary, secondary and university level education, to develop guidelines for educators in promoting students collaborative inquiry practices with technology. The research consists of four studies. In Study I, the aims were to investigate how a human tutor contributed to the university students collaborative inquiry process through virtual forums, and how the influence of the tutoring activities is demonstrated in the students inquiry discourse. Study II examined an effort to implement technology-enhanced progressive inquiry as a distance working project in a middle school context. Study III examined multiple teachers' methods of organizing progressive inquiry projects in primary and secondary classrooms through a generic analysis framework. In Study IV, a design-based research effort consisting of four consecutive university courses, applying progressive inquiry pedagogy, was retrospectively re-analyzed in order to develop the generic design framework. The results indicate that appropriate teacher support for students collaborative inquiry efforts appears to include interplay between spontaneity and structure. Careful consideration should be given to content mastery, critical working strategies or essential knowledge practices that the inquiry approach is intended to promote. In particular, those elements in students activities should be structured and directed, which are central to the aim of Progressive Inquiry, but which the students do not recognize or demonstrate spontaneously, and which are usually not taken into account in existing pedagogical methods or educational conventions. Such elements are, e.g., productive co-construction activities; sustained engagement in improving produced ideas and explanations; critical reflection of the adopted inquiry practices, and sophisticated use of modern technology for knowledge work. Concerning the scaling-up of inquiry pedagogy, it was concluded that one individual teacher can also apply the principles of Progressive Inquiry in his or her own teaching in many innovative ways, even under various institutional constraints. The developed Pedagogical Infrastructure Framework enabled recognizing and examining some central features and their interplay in the designs of examined inquiry units. The framework may help to recognize and critically evaluate the invisible learning-cultural conventions in various educational settings and can mediate discussions about how to overcome or change them.
Resumo:
Since the launch of the JISC guide Innovative Practice with e-Learning (JISC, 2005), so much has changed. At that time, early adopters were exploring the potential of mobile and wireless learning. Since then, the increased availability of public and institutional wireless networks, the emergence of new and more powerful technologies and an increase in personal ownership of these technologies are changing the way we connect, communicate and collaborate. Emerging Practice in a Digital Age, one of a series of Effective Practice guides, draws on recent JISC reports and case studies and looks at how colleges and universities are continuing to embrace innovation and respond to changes in economic, social and technological circumstances in a fastchanging world.
Resumo:
Tese de doutoramento (co-tutela), Psicologia (Psicologia da Educação), Faculdade de Psicologia da Universidade de Lisboa, Faculdade de Psicologia e de Ciências da Educação da Universidade de Coimbra, Technial University of Darmstadt, 2014
Resumo:
This short (10 minute) video provides students with an overview of the ways in which computers and the internet are used to support their learning. It introduces some really useful resources and shows you where to find help if you need it.
Resumo:
A presentation given in the Health Sciences E-Learning Enhnacnement Academy away-day, June 2010
Resumo:
Technology is changing how students learn and how we research. Perhaps you want to use technology to enhance communication or improve student support. You may want create a distance learning activity, a flexibly delivered module or indeed a whole course. You may simply want to find out where to find authoritative information, or to see what support exists for this type of work. The University is committed to delivering high quality learning and teaching, using technology where appropriate, in order to offer a distinctive Southampton educational experience. Technology Enhanced Learning (TEL), also known as e‑learning, is becoming increasingly important to students, teaching staff and the institution. This guide highlights some of the most important matters to consider. It is intended to help you to tackle the key issues that determine the success of TEL projects and to work on those projects in a considered way. Written with the input of colleagues from around the University, it prompts you to ask important questions and points you to sources of up-to-date knowledge and advice. Technology changes rapidly. This guide is about managing the work in a practical way. The University supports the use of a variety of TEL approaches for teaching and learning and colleagues are ready to offer their experience and advice. Each person has distinctive skills and specific experiences. No single person will have all the answers you are looking for. Be ready to investigate alternative approaches that suit you and your students’ needs in different ways. - Madeline Paterson, University of Southampton
Resumo:
A short overview of TEL intended for a short PCAP workshop