985 resultados para swd: Tactile Sensor
Resumo:
This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.
Resumo:
Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.
Resumo:
In this paper we provide a framework that enables the rapid development of applications using non-standard input devices. Flash is chosen as programming language since it can be used for quickly assembling applications. We overcome the difficulties of Flash to access external devices by introducing a very generic concept: The state information generated by input devices is transferred to a PC where a program collects them, interprets them and makes them available on a web server. Application developers can now integrate a Flash component that accesses the data stored in XML format and directly use it in their application.
Resumo:
Lee M.H. and Nicholls H.R., Tactile Sensing for Mechatronics: A State of the Art Survey, Mechatronics, 9, Jan 1999, pp1-31.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures.
Resumo:
Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.
Resumo:
OBJECTIVE: Acupuncture is a complex intervention consisting of specific and non-specific components. Acupuncture studies more frequently focus on collecting data from the patients’ perspective and response, but the acupuncturist’s role remains relatively unclear. In order to investigate potential non-mechanical active factors originating from the acupuncturist and transmitted to the patient during treatment, two novel devices for basic research in acupuncture were designed. The Acuplicator allows the researcher to insert needles without touching the needles themselves, while the Veliusator locks the needle in its place so that no mechanical movement can be transferred. METHODS: The Acuplicator was used to insert needles at Neiguan (PC6) on the right forearm of 23 volunteers. The insertion depth was measured using a depth gauge. The transfer of mechanical movements from the handle to the tip was detected with a precision length gauge with a motoric-tactile sensor. RESULTS: The mean insertion depth was (12.3 ± 1.5) mm (range 9.5 to 15.0 mm). Even with intense manipulation of the needle handle, no movements within ± 1 μm could be detected at the tip when the needle was locked. CONCLUSION: With these two devices it will be possible to investigate the influence of non-mechanical components such as therapeutic qi in acupuncture.
Resumo:
International audience
Resumo:
This paper describes the development of a semiconductor strain gage tactile transducer. It was designed with the goal of measuring finger forces without affecting the hand dexterity. The transducer structure was manufactured with stainless steel and has small dimensions ( 4 min diameter and I min thickness). It is light and suitable to connect to the finger pads. It has a device that prevents its damage when forces are applied. The semiconductor strain gage was used over due its small size and high sensitivity, although it has high temperature sensitivity. Theory, design and construction details are presented the signal conditioning circuit is very simple because the semiconductor strain gage sensitivity is high. It presents linear response from 0 to 100 N, 0.5 N resolution, fall time of 7.2 ms, good repeatability, and small hysteresis. The semiconductor strain gage transducer has characteristics that can make it very useful in Rehabilitation Engineering, Robotics, and Medicine.
Resumo:
This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.
Resumo:
This thesis describes the work carried out on the development of a novel digit actuator system with tactile perception feedback to a user and demonstrated as a master-slave system. For the tactile surface of the digit, contrasting sensor elements of resistive strain gauges and optical fibre Bragg grating sensors were evaluated. A distributive tactile sensing system consisting of optimised neural networking schemes was developed, resulting in taxonomy of artificial touch. The device is suitable for use in minimal invasive surgical (MIS) procedures as a steerable tip and a digit constructed wholly from polymers makes it suitable for use in Magnetic Resonance Imaging (MRI) environments enabling active monitoring of the patient during a procedure. To provide a realistic template of the work the research responded to the needs of two contrasting procedures: palpation of the prostate and endotracheal intubation in anaesthesia where the application of touch sense can significantly assist navigation. The performance of the approach was demonstrated with an experimental digit constructed for use in the laboratory in phantom trials. The phantom unit was developed to resemble facets of the clinical applications and digit system is able to evaluate reactive force distributions acting over the surface of the digit as well as different descriptions of contact and motion relative to the surface of the lumen. Completing control of the digit is via an instrumented glove, such that the digit actuates in sympathy with finger gesture and tactile information feedback is achieved by a combination of the tactile and visual means.
Resumo:
Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties.