976 resultados para surface defects
Resumo:
Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.
Resumo:
Based on the molecular dynamics simulation, plastic deformation mechanisms associated with the zigzag stress curves in perfect and surface defected copper nanowires under uniaxial tension are studied. In our previous study, it has found that the surface defect exerts larger influence than the centro-plane defect, and the 45o surface defect appears as the most influential surface defect. Hence, in this paper, the nanowire with a 45o surface defect is chosen to investigate the defect’s effect to the plastic deformation mechanism of nanowires. We find that during the plastic deformation of both perfect and defected nanowires, decrease regions of the stress curve are accompanied with stacking faults generation and migration activities, but during stress increase, the structure of the nanowire appears almost unchanged. We also observe that surface defects have obvious influence on the nanowire’s plastic deformation mechanisms. In particular, only two sets of slip planes are found to be active and twins are also observed in the defected nanowire.
Resumo:
Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.
Resumo:
Large-scale molecular dynamics simulations are performed to characterize the effects of pre-existing surface defects on the vibrational properties of Ag nanowires. It is found that the first order natural frequency of the nanowire appears insensitive to different surface defects, indicating a defect insensitivity property of the nanowire’s Young’s modulus. In the meanwhile, an increase of the quality (Q)-factor is observed due to the presence of defects. Particular, a beat phenomenon is observed for the nanowire with the presence of a surface edge defect, which is driven by a single actuation. It is concluded that different surface defects could act as an effective mean to tune the vibrational properties of nanowires. This study sheds lights on the better understanding of nanowire’s mechanical performance when surface defects are presented, which would benefit the development of nanowire-based devices.
Resumo:
Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.
Resumo:
Using steady state and transient capacitance measurements, the electrical characteristics of a defect layer on the surface of bulk GaSb created during the hydrogen plasma treatment is presented. The trap density, activation energies, and the thickness of the defect layer have been calculated. The trap densities are comparable in magnitude to the carrier concentration. The defects introduce multiple energy levels in the band gap. Typical defect layer thicknesses range from a few angstroms to a fraction of a micron. © 1995 American Institute of Physics.
Resumo:
This report explores the relation between image intensity and object shape. It is shown that image intensity is related to surface orientation and that a variation in image intensity is related to surface curvature. Computational methods are developed which use the measured intensity variation across surfaces of smooth objects to determine surface orientation. In general, surface orientation is not determined locally by the intensity value recorded at each image point. Tools are needed to explore the problem of determining surface orientation from image intensity. The notion of gradient space , popularized by Huffman and Mackworth, is used to represent surface orientation. The notion of a reflectance map, originated by Horn, is used to represent the relation between surface orientation image intensity. The image Hessian is defined and used to represent surface curvature. Properties of surface curvature are expressed as constraints on possible surface orientations corresponding to a given image point. Methods are presented which embed assumptions about surface curvature in algorithms for determining surface orientation from the intensities recorded in a single view. If additional images of the same object are obtained by varying the direction of incident illumination, then surface orientation is determined locally by the intensity values recorded at each image point. This fact is exploited in a new technique called photometric stereo. The visual inspection of surface defects in metal castings is considered. Two casting applications are discussed. The first is the precision investment casting of turbine blades and vanes for aircraft jet engines. In this application, grain size is an important process variable. The existing industry standard for estimating the average grain size of metals is implemented and demonstrated on a sample turbine vane. Grain size can be computed form the measurements obtained in an image, once the foreshortening effects of surface curvature are accounted for. The second is the green sand mold casting of shuttle eyes for textile looms. Here, physical constraints inherent to the casting process translate into these constraints, it is necessary to interpret features of intensity as features of object shape. Both applications demonstrate that successful visual inspection requires the ability to interpret observed changes in intensity in the context of surface topography. The theoretical tools developed in this report provide a framework for this interpretation.
Resumo:
First steps are taken to model the electrochemical deposition of metals in nanometer-sized cavities. In the present work, the electrochemical deposition of Cu atoms in nanometer-sized holes dug on Au(111) is investigated through Monte Carlo simulations using the embedded atom method to represent particle interactions. By sweeping the chemical potential of Cu, a cluster is allowed to grow within the hole rising four atomic layers above the surface. Its lateral extension remains confined to the area defined by the borders of the original defect. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Defects are often present in rolled products, such as wire rod. The markets demand for wire rod without any defects has increased. In the final wire rod products, defects originating from the steel making, casting, pre-rolling of billets and during the wire rod rolling can appear. In this work, artificial V-shaped longitudinal surface cracks has been analysed experimentally and by means of FEM. The results indicate that the experiments and FEM calculations show the same tendency except in two cases, where instability due to a fairly “round” false round bars disturbed the experiment. FE studies in combination with practical experiments are necessary in order to understand the behaviour of the material flows in the groove and to explain whether the crack will open up as a V-shape or if it will be closed as an I-shape.
Resumo:
An optical-based sorting device for oranges is presented. Its design has been based on homogeneity of illumination and detection of the light reflected and scattered by the fruit. Several configurations are studied and compared under semiempirical formulations .A general purpose microprocessor based hardware is proposed. A sorting rate over 10 fruits per second on each channel is achieved.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the mono-crystalline copper with different defects is investigated through tension and nanoindentation simulation. The single-crystal copper nanowire with surface defects is firstly studied through tension. For validation, the tension simulations for nanowire without defect are carried out under different temperatures and strain rates. The defects on nanowires are then systematically studied in considering different defects orientation distribution. It is found that the Young’s modulus is insensitive of surface defects and centro-plane defects. However, the yield strength and yield point show a significant decrease due to the different defects. Specially, the 〖45〗^° defect in surface and in (200) plane exerts the biggest influence to the yield strength, about 34.20% and 51.45% decrease are observed, respectively. Different defects are observed to serve as a dislocation source and different necking positions of the nanowires during tension are found. During nanoindentation simulation, dislocation is found nucleating below the contact area, but no obvious dislocation is generated around the nano-cavity. Comparing with the perfect substrate during nanoindentation, the substrate with nano-cavities emerged less dislocations, it is supposed that the nano-cavity absorbed part of the indent energy, and less plastic deformation happened in the defected substrate.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.