875 resultados para spiral extrusion
Resumo:
Aim. Our aim in this paper is to explain a methodological/methods package devised to incorporate situational and social world mapping with frame analysis, based on a grounded theory study of Australian rural nurses' experiences of mentoring. Background. Situational analysis, as conceived by Adele Clarke, shifts the research methodology of grounded theory from being located within a postpositivist paradigm to a postmodern paradigm. Clarke uses three types of maps during this process: situational, social world and positional, in combination with discourse analysis. Method. During our grounded theory study, the process of concurrent interview data generation and analysis incorporated situational and social world mapping techniques. An outcome of this was our increased awareness of how outside actors influenced participants in their constructions of mentoring. In our attempts to use Clarke's methodological package, however, it became apparent that our constructivist beliefs about human agency could not be reconciled with the postmodern project of discourse analysis. We then turned to the literature on symbolic interactionism and adopted frame analysis as a method to examine the literature on rural nursing and mentoring as secondary form of data. Findings. While we found situational and social world mapping very useful, we were less successful in using positional maps. In retrospect, we would argue that collective action framing provides an alternative to analysing such positions in the literature. This is particularly so for researchers who locate themselves within a constructivist paradigm, and who are therefore unwilling to reject the notion of human agency and the ability of individuals to shape their world in some way. Conclusion. Our example of using this package of situational and social worlds mapping with frame analysis is intended to assist other researchers to locate participants more transparently in the social worlds that they negotiate in their everyday practice. © 2007 Blackwell Publishing Ltd.
Resumo:
This paper presents the design and implementation of a microstrip to parallel strip balun which are frequently used as balanced antennas feed. This wideband balun transition is composed of a parallel strip which is connected to the spiral antenna and a microstrip line where the width of the ground plane is gradually reduced to eventually resemble the parallel strip. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. The entire circuit was fabricated on RT Duriod 5880 substrate. The circuit designs were simulated and optimised using CST Microwave Studio and the simulated results are compared with the measured results. The back-to-back microstrip to parallel strip has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the proposed balun was validated with the spiral antenna. The measured results were compared with the simulated results and it shows that the antenna operates well in wideband frequency range from 2.5 to 15 GHz.
Resumo:
The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.
Resumo:
Wires of YBa2Cu3O7-x were fabricated by extrusion using a hydroxypropyl methylcellulose (HPMC) binder. As little as 2 wt.% binder was added to an oxide prepared by a novel co-precipitation process, to produce a plastic mass which readily gave continuous extrusion of long lengths of wire in a reproducible fashion. Critical temperatures of 92K were obtained for wires given optimum high-temperature heat treatments. Critical current densities greater than 1000 A cm-1 were measured at 77.3K using heat treatments at around 910°C for 10h. These transport critical current densities, measured on centimeter-long wires, were obtained with microstructures showing a relatively dense and uniform distribution of randomly oriented, small YBa2Cu3O7-x grains. © 1993.
Resumo:
Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Resumo:
The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure.
Resumo:
The light distribution in the disks of many galaxies is ‘lopsided’ with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC)4.5-mu m band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller dis scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.
Resumo:
A one-step thermal extrusion process has been investigated for the modification of starch with alcohol in order to improve the film properties. Unmodified starch/glycerol mixtures containing Methanol (MetOH), ethanol (EtOH) and their combinations (5, 10 and 15 wt%) were thermally extruded to produce thermoplastic. The final hot-pressed film showed increased stiffness and crystallinity, while having decreased moisture uptake due to oxidation and alcohol complexing molecular interactions. The Young’s Modulus, tensile strength and elongation at break increased by 60%, 15% and 32% respectively, for 5 wt% MetOH derived film, compared to the control. The film moisture content was reduced by up to 15 wt% for 5 wt% EtOH-derived film. Generally the crystallinity increased in the alcohol-derived films due to an increased complexing of alcohol with starch forming the VH polymorph. Fourier transform infra-red (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopic analysis were used to discuss the molecular interactions between the starch and alcohol molecules.
Resumo:
The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.
Resumo:
The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.