914 resultados para simulated drift
Resumo:
To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.
Resumo:
The aim of this work was to evaluate the grain yield of two soybean cultivars (CD-216 and CD-212RR, divided into three stages: (i) to evaluate the effect of components of production, of simulated drift of glyphosate throught subdoses (1,3; 2,6; 5,3; 11,5 and 22,5 g e. a. ha(-1)) of two cultivars; (ii) to evaluate the influence of glyphosate (720; 1080; 1440 and 1800 g e. a. ha(-1)) in the transgenic soybean yield The experiments carried out in experimental area in the school farm of Uniderp, city of Dorados, MS ina typical Rhodic Haplustox. The experimental design used was in blocks to perhaps The parameters were: heigh oh the pln\ant, number of pods per plants, number of seeds per pod, masss of 100 grains, grain yield (%) of germination, dry mass of seedling, the lengh of radical and air part. The cultivate CD-212RR was not influenced by the subdoses application of glyphosate. Effect of growth stimulus was not observerd due to application of glyphosate subdoses in both cultivars in field conditions. Doses from 11,25 g e. a. ha(-1) caused60 of phytotoxicity in CD-216, at 28 DAA reduce production by 33%. The height and number of pods per plant of cultivar CD-212RR have been reduced and productivity decrease 21% with the application of 1.800 g e.a.ha(-1) of glyphosate.
Resumo:
This work aims to evaluate the effects of a simulated drift of glyphosate at different doses on some physiological characteristics of Eucalyptus grandis. A completely randomized design with five replications was used, where each pot contained an eucalyptus plant and was considered as one repetition. The plants received doses of glyphosate corresponding to 0, 30, 60, 90 and 120g.ha(-1), in the Scout (R) commercial formulation: The application was performed in three forms: leaves, stem and whole plant (leaf + stem). For foliar application, the stem was covered with plastic tape to avoid being hit by the solution, and leaves with a plastic bag when the stem was spayed. The application was performed by means of a steady spray gun equipped with four XR 11002 tips, with a pressure of 200Kpa and a volume of 2001 ha(-1). Stomatal conductance, transpiration and leaf temperature were measured at 7 days after application (DAA). The eucalypt plants receiving applications in leaves and whole plant showed, at the highest glyphosate dosis (120g.ha(-1)), a transpiration reduced by 22% and an 18% increase of stomatal resistance at 7 DAA. The lowest dose (30g-ha(-1)) applied to the whole plant caused a transpiration stimulation of 18%, and a leaf to air difference in temperature of -1.66 degrees C, while the difference between the highest and lowest dose used was 3.5 degrees C.
Resumo:
The present work aimed to evaluate the effects of simulated drift of glyphoste on Eucalyptus grandis, through the application of low doses in different parts of the plant. The experimental design was a randomized block design with five replications. The treatments were glyphosate application at 0; 30; 60; 90 e 120 g a.e. ha(-1) of the commercial formulation Scout (R). Three forms of application were used: applying on leaf, on stem, and on the entire plant (leaf + stem). For leaf application, stems were covered with plastic ribbons to protect them from the solution; the same was made with plants that were sprayed on stems, covering leaf with plastic bag. The application was carried out in an armed stationary spray tips XR 11002 VS, with 183 KPa pressure in volume of 200 L ha(-1). The eucalyptus plants receiving applications in leaves and whole plant (leaves + stem) showing effects of intoxication are more intense about the plants that received the stem applications only. However, there may be increases in height growth and total dry mass of eucalyptus plants in applications of 30 g a.e. ha(-1) glyphosate.
Resumo:
This experiment aimed to evaluate the effect of increasing clomazone (sprayed alone or in mixture with ametryn) drift simulation on quantitative and qualitative aspects of orange production when applied at two developmental plant stages: flowering and initial fruit development (fruits 2 cm diameter or smaller). Increasing drifts of clomazone, in two formulations, and clomazone in mixtures with ametryn were tested. Fruit morphological features, fruit color, flower and fruit abortion and leaf chlorophyll content were evaluated. Simulated drift similar to the recommended dose of clomazone and clomazone plus ametryn caused fruit abortion in citrus at the stage of fruits 2 cm diameter or smaller. Lower drift doses did not result in fruit abortion. Fruit diameter reduction was observed with drift off above 25% of clomazone alone recommended rate and 50% when in mixture with ametryn or in microcapsule formulation. Clomazone drift at 50% of the recommended rate (alone or in mixture with ametryn ) caused clorotic and necrotic spots in the fruit peel. Drift did not affect juice quality in any of the treatments tested.
Resumo:
This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.
Resumo:
Solar geoengineering has been proposed as a potential means to counteract anthropogenic climate change, yet it is unknown how such climate intervention might affect the Earth's climate on the millennial time scale. Here we use the HadCM3L model to conduct a 1000year sunshade geoengineering simulation in which solar irradiance is uniformly reduced by 4% to approximately offset global mean warming from an abrupt quadrupling of atmospheric CO2. During the 1000year period, modeled global climate, including temperature, hydrological cycle, and ocean circulation of the high-CO2 simulation departs substantially from that of the control preindustrial simulation, whereas the climate of the geoengineering simulation remains much closer to that of the preindustrial state with little drift. The results of our study do not support the hypothesis that nonlinearities in the climate system would cause substantial drift in the climate system if solar geoengineering was to be deployed on the timescale of a millennium.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.
Resumo:
This paper presents a database ATP (Alternative Transient Program) simulated waveforms for shunt reactor switching cases with vacuum breakers in motor circuits following interruption of the starting current. The targeted objective is to provide multiple reignition simulated data for diagnostic and prognostic algorithms development, but also to help ATP users with practical study cases and component data compilation for shunt reactor switching. This method can be easily applied with different data for the different dielectric curves of circuit-breakers and networks. This paper presents design details, discusses some of the available cases and the advantages of such simulated data.
Resumo:
Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.