856 resultados para sequential unit root tests
Resumo:
This paper examines the finite sample properties of three testing regimes for the null hypothesis of a panel unit root against stationary alternatives in the presence of cross-sectional correlation. The regimes of Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) are assessed in the presence of multiple factors and also other non-standard situations. The behaviour of some information criteria used to determine the number of factors in a panel is examined and new information criteria with improved properties in small-N panels proposed. An application to the efficient markets hypothesis is also provided. The null hypothesis of a panel random walk is not rejected by any of the tests, supporting the efficient markets hypothesis in the financial services sector of the Australian Stock Exchange.
Resumo:
This paper proposes the use of an improved covariate unit root test which exploits the cross-sectional dependence information when the panel data null hypothesis of a unit root is rejected. More explicitly, to increase the power of the test, we suggest the utilization of more than one covariate and offer several ways to select the ‘best’ covariates from the set of potential covariates represented by the individuals in the panel. Employing our methods, we investigate the Prebish-Singer hypothesis for nine commodity prices. Our results show that this hypothesis holds for all but the price of petroleum.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
Most panel unit root tests are designed to test the joint null hypothesis of a unit root for each individual series in a panel. After a rejection, it will often be of interest to identify which series can be deemed to be stationary and which series can be deemed nonstationary. Researchers will sometimes carry out this classification on the basis of n individual (univariate) unit root tests based on some ad hoc significance level. In this paper, we demonstrate how to use the false discovery rate (FDR) in evaluating I(1)=I(0) classifications based on individual unit root tests when the size of the cross section (n) and time series (T) dimensions are large. We report results from a simulation experiment and illustrate the methods on two data sets.
Resumo:
In this essay, a method for comparing the asymptotic power of the multivariate unit root tests proposed in Phillips & Durlauf (1986) and Flˆores, Preumont & Szafarz (1996) is proposed. In order to determine the asymptotic power of the tests the asymptotic distributions under the null hypothesis and under the set of alternative hypotheses described in Phillips (1988) are determined. In addition, a test which combines characteristics of both tests is proposed and its distributions under the null hypothesis and the same set of alternative hypotheses are determined. This allows us to determine what causes any difference in the asymptotic power of the two tests against the set of alternative hypotheses considered
Resumo:
Empirical evidence suggests that real exchange rate is characterized by the presence of near-unity and additive outliers. Recent studeis have found evidence on favor PPP reversion by using the quasi-differencing (Elliott et al., 1996) unit root tests (ERS), which is more efficient against local alternatives but is still based on least squares estimation. Unit root tests basead on least saquares method usually tend to bias inference towards stationarity when additive out liers are present. In this paper, we incorporate quasi-differencing into M-estimation to construct a unit root test that is robust not only against near-unity root but also against nonGaussian behavior provoked by assitive outliers. We re-visit the PPP hypothesis and found less evidemce in favor PPP reversion when non-Gaussian behavior in real exchange rates is taken into account.
Resumo:
A new multivariate test for the detection ofunit roots is proposed. Use is made ofthe possible correlations between the disturbances of difIerent series, and constrained and unconstrained SURE estimators are employed. The corresponding asymptotic distributions, for the case oftwo series, are obtained and a table with criticai vaIues is generated. Some simulations indivate that the procedure performs better than the existing alternatives.
Resumo:
We apply the efficient unit-roots tests of Elliott, Rothenberg, and Stock (1996), and Elliott (1998) to twenty-one real exchange rates using monthly data of the G-7 countries from the post-Bretton Woods floating exchange rate period. Our results indicate that, for eighteen out of the twenty-one real exchange rates, the null hypothesis of a unit root can be rejected at the 10% significance level or better using the Elliot et al (1996) DF-GLS test. The unit-root null hypothesis is also rejected for one additional real exchange rate when we allow for one endogenously determined break in the time series of the real exchange rate as in Perron (1997). In all, we find favorable evidence to support long-run purchasing power parity in nineteen out of twenty-one real exchange rates. Second, we find no strong evidence to suggest that the use of non-U.S. dollar-based real exchange rates tend to produce more favorable result for long-run PPP than the use of U.S. dollar-based real exchange rates as Lothian (1998) has concluded.
Resumo:
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asymptotic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.
Resumo:
This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.
Resumo:
Doutoramento em Economia
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).