827 resultados para rule-based system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecasting” and “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This paper was made according to the program № 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project 06-I-П14-052

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rule-based approach for classifying previously identified medical concepts in the clinical free text into an assertion category is presented. There are six different categories of assertions for the task: Present, Absent, Possible, Conditional, Hypothetical and Not associated with the patient. The assertion classification algorithms were largely based on extending the popular NegEx and Context algorithms. In addition, a health based clinical terminology called SNOMED CT and other publicly available dictionaries were used to classify assertions, which did not fit the NegEx/Context model. The data for this task includes discharge summaries from Partners HealthCare and from Beth Israel Deaconess Medical Centre, as well as discharge summaries and progress notes from University of Pittsburgh Medical Centre. The set consists of 349 discharge reports, each with pairs of ground truth concept and assertion files for system development, and 477 reports for evaluation. The system’s performance on the evaluation data set was 0.83, 0.83 and 0.83 for recall, precision and F1-measure, respectively. Although the rule-based system shows promise, further improvements can be made by incorporating machine learning approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expert systems have been increasingly popular for commercial importance. A rule based system is a special type of an expert system, which consists of a set of ‘if-then‘ rules and can be applied as a decision support system in many areas such as healthcare, transportation and security. Rule based systems can be constructed based on both expert knowledge and data. This paper aims to introduce the theory of rule based systems especially on categorization and construction of such systems from a conceptual point of view. This paper also introduces rule based systems for classification tasks in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente, há diferentes definições de implicações fuzzy aceitas na literatura. Do ponto de vista teórico, esta falta de consenso demonstra que há discordâncias sobre o real significado de "implicação lógica" nos contextos Booleano e fuzzy. Do ponto de vista prático, isso gera dúvidas a respeito de quais "operadores de implicação" os engenheiros de software devem considerar para implementar um Sistema Baseado em Regras Fuzzy (SBRF). Uma escolha ruim destes operadores pode implicar em SBRF's com menor acurácia e menos apropriados aos seus domínios de aplicação. Uma forma de contornar esta situação e conhecer melhor os conectivos lógicos fuzzy. Para isso se faz necessário saber quais propriedades tais conectivos podem satisfazer. Portanto, a m de corroborar com o significado de implicação fuzzy e corroborar com a implementação de SBRF's mais apropriados, várias leis Booleanas têm sido generalizadas e estudadas como equações ou inequações nas lógicas fuzzy. Tais generalizações são chamadas de leis Boolean-like e elas não são comumente válidas em qualquer semântica fuzzy. Neste cenário, esta dissertação apresenta uma investigação sobre as condições suficientes e necessárias nas quais três leis Booleanlike like — y ≤ I(x, y), I(x, I(y, x)) = 1 e I(x, I(y, z)) = I(I(x, y), I(x, z)) — se mantém válidas no contexto fuzzy, considerando seis classes de implicações fuzzy e implicações geradas por automorfismos. Além disso, ainda no intuito de implementar SBRF's mais apropriados, propomos uma extensão para os mesmos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an architecture for a rule-based online management systems (RuleOMS). Typically, many domain areas face the problem that stakeholders maintain databases of their business core information and they have to take decisions or create reports according to guidelines, policies or regulations. To address this issue we propose the integration of databases, in particular relational databases, with a logic reasoner and rule engine. We argue that defeasible logic is an appropriate formalism to model rules, in particular when the rules are meant to model regulations. The resulting RuleOMS provides an efficient and flexible solution to the problem at hand using defeasible inference. A case study of an online child care management system is used to illustrate the proposed architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last 60 years, computers and software have favoured incredible advancements in every field. Nowadays, however, these systems are so complicated that it is difficult – if not challenging – to understand whether they meet some requirement or are able to show some desired behaviour or property. This dissertation introduces a Just-In-Time (JIT) a posteriori approach to perform the conformance check to identify any deviation from the desired behaviour as soon as possible, and possibly apply some corrections. The declarative framework that implements our approach – entirely developed on the promising open source forward-chaining Production Rule System (PRS) named Drools – consists of three components: 1. a monitoring module based on a novel, efficient implementation of Event Calculus (EC), 2. a general purpose hybrid reasoning module (the first of its genre) merging temporal, semantic, fuzzy and rule-based reasoning, 3. a logic formalism based on the concept of expectations introducing Event-Condition-Expectation rules (ECE-rules) to assess the global conformance of a system. The framework is also accompanied by an optional module that provides Probabilistic Inductive Logic Programming (PILP). By shifting the conformance check from after execution to just in time, this approach combines the advantages of many a posteriori and a priori methods proposed in literature. Quite remarkably, if the corrective actions are explicitly given, the reactive nature of this methodology allows to reconcile any deviations from the desired behaviour as soon as it is detected. In conclusion, the proposed methodology brings some advancements to solve the problem of the conformance checking, helping to fill the gap between humans and the increasingly complex technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various environmental management systems, standards and tools are being created to assist companies to become more environmental friendly. However, not all the enterprises have adopted environmental policies in the same scale and range. Additionally, there is no existing guide to help them determine their level of environmental responsibility and subsequently, provide support to enable them to move forward towards environmental responsibility excellence. This research proposes the use of a Belief Rule-Based approach to assess an enterprise’s level commitment to environmental issues. The Environmental Responsibility BRB assessment system has been developed for this research. Participating companies will have to complete a structured questionnaire. An automated analysis of their responses (using the Belief Rule-Based approach) will determine their environmental responsibility level. This is followed by a recommendation on how to progress to the next level. The recommended best practices will help promote understanding, increase awareness, and make the organization greener. BRB systems consist of two parts: Knowledge Base and Inference Engine. The knowledge base in this research is constructed after an in-depth literature review, critical analyses of existing environmental performance assessment models and primarily guided by the EU Draft Background Report on "Best Environmental Management Practice in the Telecommunications and ICT Services Sector". The reasoning algorithm of a selected Drools JBoss BRB inference engine is forward chaining, where an inference starts iteratively searching for a pattern-match of the input and if-then clause. However, the forward chaining mechanism is not equipped with uncertainty handling. Therefore, a decision is made to deploy an evidential reasoning and forward chaining with a hybrid knowledge representation inference scheme to accommodate imprecision, ambiguity and fuzzy types of uncertainties. It is believed that such a system generates well balanced, sensible and Green ICT readiness adapted results, to help enterprises focus on making improvements on more sustainable business operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.