873 resultados para roads infrastructure
Resumo:
Rural road in Lao PDR defined as connecting road from village to main road, where it will lead them to market and access to other economic and social service facilities. However, due to mostly rural people accustom with subsistence farming, connecting road seems less important for rural people as their main farming produce is for own consumption rather than markets. After the introduction and implementation of New Economic Mechanism (NEM) since 1986, many rural villages have gradually developed and integrated into market system where people have significantly changed their livelihood with a better system. This progress has significantly contributed in improving income earning of people, better living standard and reduce poverty. The paper aims to illustrate the significant of rural road as connecting road from village to markets or a market access approach of farm produces. It also demonstrates through which approach, rural farmers/people could improve their income earning, develop their farming system, living standard and reduce poverty.
Resumo:
Esta dissertação aborda a espacialização dos acidentes de trânsito notificados entre os anos de 2005 e 2013 nos municípios de Fundão, Serra, Vitória, Cariacica, Vila Velha, Viana e Guarapari, que juntos compõem a Região Metropolitana da Grande Vitória (RMGV). Para o cumprimento deste propósito, realizou-se um diagnóstico temporal e espacial dos acidentes de trânsito ocorridos nessa região, analisando-se o acelerado crescimento da frota veicular, a situação da atual infraestrutura viária e o crescimento demográfico. Além disso, foram listadas as principais variáveis de risco responsáveis por ocasionar acidentes de trânsito. Quanto à fundamentação teórica, foi construída a partir da Geografia dos Transportes, que forneceu subsídios para contextualizar a importância da análise espacial geográfica sobre o fenômeno aqui tratado. Na sequência, estimaram-se os custos gerados por esse fenômeno, chegando à cifra de mais de R$ 900 milhões de custos associados aos acidentes de trânsito da RMGV em 2013. Utilizando-se de técnicas de geoestatística e de geoprocessamento, identificaram-se as áreas de concentração de acidentes de trânsito na RMGV, conforme as tipologias de colisões e choques, capotamentos e tombamentos e atropelamentos. Logrou-se, como conclusão, que 1) além do crescimento em quantidade e concentração das ocorrências, houve também, no decorrer da série histórica, o espraiamento dos registros de acidentes de trânsito na RMGV, e 2) os acidentes, conforme sua tipologia, concentram-se em diferentes áreas da região estudada.
Resumo:
The dilemma efficiency versus equity, together with political partisan interests, has received increasing attention to explain the territorial allocation of investments. However, centralization intended to introduce or reinforce hierarchization in the political system has not been object as of now of empirical analysis. Our main contribution to the literature is providing evidence that meta-political objectives related to the ordering of political power and administration influence regional investment. In this way, we find evidence that network mode’s (roads and railways) investment programs are influenced by the centralization strategy of investing near to the political capital, while investment effort in no-network modes (airports and ports) appears to be positively related to distance. Since investment in surface transportation infrastructures is much higher than that in airports and ports, and taken into account that regions surrounding the political capital are poorer than the average, we suggest that centralization rather than redistribution has been the driver for the concentration of public investment on these regions.
Resumo:
The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, and Revenue Bonds Capitals. If you have any questions, please contact Stuart Anderson at 515-239-1661 or stuart.anderson@dot.iowa.gov.
Resumo:
The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems. Supplement Information to the August 2008
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. Although a status report for the Bridge Safety Fund was already submitted to the directors of LSA and DOM, a status report on those projects is also included within this attachment for consistency with last year’s reporting. In addition, per request from LSA, status reports for the FY 2011 passenger rail appropriation from the Underground Storage Tank Fund and the FY 2010 Commercial Service Vertical Infrastructure appropriation from the General Fund are also listed in this report.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. In addition, we have included status reports for the FY11 passenger rail appropriation from the Underground Storage Tank Fund and the FY2010 Commercial Service Vertical Infrastructure appropriation from the General Fund.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. In addition, we have included status reports for the FY11 passenger rail appropriation from the Underground Storage Tank Fund and the FY2010 Commercial Service Vertical Infrastructure appropriation from the General Fund.
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, interactive, full-scale, three-dimensional (3D) models of highway infrastructure. For this project, the highway infrastructure element chosen was a two-way, stop-controlled intersection (TWSCI). VirtuTrace, a virtual reality simulation engine developed by the principal investigator, was used to construct the dynamic 3D model of the TWSCI. The model was implemented in C6, which is Iowa State University’s Cave Automatic Virtual Environment (CAVE). Representatives from the Institute of Transportation at Iowa State University, as well as representatives from the Iowa Department of Transportation, experienced the simulated TWSCI. The two teams identified verbally the significant potential that the approach introduces for the application of next-generation simulated environments to road design and safety evaluation.
Resumo:
The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.