999 resultados para resonance property
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]
Resumo:
We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.
Resumo:
Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles
Resumo:
We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.
Resumo:
We have studied the Fano resonance in photon-assisted transport through a quantum dot. Both the coherent current and the spectral density of shot noise have been calculated. It is predicted that the shape of the Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has also been investigated. We further predict the current and spectral density of shot noise as a periodic function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.
Resumo:
The current-voltage (I-V) characteristics of a doped weakly coupled GaAs/AlAs superlattice (SL) with narrow barriers are measured under hydrostatic pressure from 1 bar to 13.5 kbar at both 77 and 300 K. The experimental results show that, contrary to the results in SL with wide barriers, the plateau in the I-V curve at 77 K does not shrink with increasing pressure, and becomes wider after 10.5 kbar. It is explained by the fact that the E-Gamma 1-E-Gamma 1 resonance peak is higher than the E-Gamma 1-E-X1 resonance peak. At 300 K, however, because of the more important contribution of the nonresonant component to the current, the plateau shrinks with increasing pressure. (C) 1999 American Institute of Physics. [S0021-8979(99)02008-3].
Resumo:
The paper reports a method of depositing SiO2, SiNx, a:Si, Si3N4 and SiOxNy dielectric thin films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD) on InP, InGaAs and other compound semiconductor optoelectronic devices,and give a technology of depositing dielectric thin films and optical coatings by ECR CVD on Laser's Bars. The experiment results show the dielectric thin films and optical coatings are stable at thermomechanical property,optical properties and the other properties. In addition, the dielectric thin film deposition that there is low leakage current is reported for using as diffusion and ion implatation masks in the paper. In the finally, the dielectric film refractive index can be accurately controlled by the N-2/O-2/Ar gas flow rate.
Resumo:
Gadolinium fullerenols, as novel and potential contrast agents for magnetic resonance imaging, were synthesized, which showed excellent efficiency in enhancing water proton relaxation with a relaxivity of 47.0+/-1.0 mM(-1).s(-1).
Resumo:
Three pairs of polyimide/polyimide blends (50/50 wt%) with different molecular structures were prepared by two ways, i.e. mixing of the polyamic acid precursors with subsequent imidization, and direct solution mixing of the polyimides. The blends were studied with DMA technique. The results obtained show that all the blends prepared with these two different ways are miscible, as there existed only one glass transition temperature(Tg) for all the blends. It is suggested that the miscibility of these polyimide/polyimide blends is a result of the strong inter-molecular charge-transfer interaction between the chains of their components.
Resumo:
We can recognize objects through receiving continuously huge temporal information including redundancy and noise, and can memorize them. This paper proposes a neural network model which extracts pre-recognized patterns from temporally sequential patterns which include redundancy, and memorizes the patterns temporarily. This model consists of an adaptive resonance system and a recurrent time-delay network. The extraction is executed by the matching mechanism of the adaptive resonance system, and the temporal information is processed and stored by the recurrent network. Simple simulations are examined to exemplify the property of extraction.
Resumo:
The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.