748 resultados para recognition of prior learning
Resumo:
This chapter interrogates what recognition of prior learning (RPL) can and does mean in the higher education sector—a sector in the grip of the widening participation agenda and an open access age. The chapter discusses how open learning is making inroads into recognition processes and examines two studies in open learning recognition. A case study relating to e-portfolio-style RPL for entry into a Graduate Certificate in Policy and Governance at a metropolitan university in Queensland is described. In the first instance, candidates who do not possess a relevant Bachelor degree need to demonstrate skills in governmental policy work in order to be eligible to gain entry to a Graduate Certificate (at Australian Qualifications Framework Level 8) (Australian Qualifications Framework Council, 2013, p. 53). The chapter acknowledges the benefits and limitations of recognition in open learning and those of more traditional RPL, anticipating future developments in both (or their convergence).
Resumo:
In Australia, Vocational Education and Training (VET) programs are delivered in a variety of settings. You can be enrolled within a course in a high school, at a technical institution, private training provider or at your place of employment. Recognition of prior learning, on the job training and industry partnerships are strong factors supporting the change of delivery. The curriculum content within these programs has also changed. For example within the Business Services programs, the prerequisite and corequisite skill of touch keyboarding to an Australian Standard has moved from a core requirement in the 1990’s to an elective requirement in the 2000’s. Where a base skill becomes an elective skill, how does this effect the performance and outcomes for the learner, educator, employer and society as a whole? This paper will explore these issues and investigate the current position of standards within the VET curriculum today.
Resumo:
Frequency of exposure to very low- and high-frequency words was manipulated in a three-phase (familiarisation, study, and test) design. During familiarisation, words were presented with their definition (once, four times, or not presented). One week (Experiment 1) or one day (Experiment 2) later, participants studied a list of homogeneous pairs (i.e., pair members were matched on background and familiarisation frequency). Item and associative recognition of high- and very low-frequency words presented in intact, rearranged, old-new, or new-new pairs were tested in Experiment 1. Associative recognition of very low-frequency words was tested in Experiment 2. Results showed that prior familiaris ation improved associative recognition of very low-frequency pairs, but had no effect on high-frequency pairs. The role of meaning in the formation of item-to-item and item-to-context associations and the implications for current models of memory are discussed.
Resumo:
Introduction: Delirium is a serious issue associated with high morbidity and mortality in older hospitalised people. Early recognition enables diagnosis and treatment of underlying cause/s, which can lead to improved patient outcomes. However, research shows knowledge and accurate nurse recognition of delirium and is poor and lack of education appears to be a key issue related to this problem. Thus, the purpose of this randomised controlled trial (RCT) was to evaluate, in a sample of registered nurses, the usability and effectiveness of a web-based learning site, designed using constructivist learning principles, to improve acute care nurse knowledge and recognition of delirium. Prior to undertaking the RCT preliminary phases involving; validation of vignettes, video-taping five of the validated vignettes, website development and pilot testing were completed. Methods: The cluster RCT involved consenting registered nurse participants (N = 175) from twelve clinical areas within three acute health care facilities in Queensland, Australia. Data were collected through a variety of measures and instruments. Primary outcomes were improved ability of nurses to recognise delirium using written validated vignettes and improved knowledge of delirium using a delirium knowledge questionnaire. The secondary outcomes were aimed at determining nurse satisfaction and usability of the website. Primary outcome measures were taken at baseline (T1), directly after the intervention (T2) and two months later (T3). The secondary outcomes were measured at T2 by participants in the intervention group. Following baseline data collection remaining participants were assigned to either the intervention (n=75) or control (n=72) group. Participants in the intervention group were given access to the learning intervention while the control group continued to work in their clinical area and at that time, did not receive access to the learning intervention. Data from the primary outcome measures were examined in mixed model analyses. Results: Overall, the effect of the online learning intervention over time comparing the intervention group and the control group were positive. The intervention groups‘ scores were higher and the change over time results were statistically significant [T3 and T1 (t=3.78 p=<0.001) and T2 and T1 baseline (t=5.83 p=<0.001)]. Statistically significant improvements were also seen for delirium recognition when comparing T2 and T1 results (t=2.58 p=0.012) between the control and intervention group but not for changes in delirium recognition scores between the two groups from T3 and T1 (t=1.80 p=0.074). The majority of the participants rated the website highly on the visual, functional and content elements. Additionally, nearly 80% of the participants liked the overall website features and there were self-reported improvements in delirium knowledge and recognition by the registered nurses in the intervention group. Discussion: Findings from this study support the concept that online learning is an effective and satisfying method of information delivery. Embedded within a constructivist learning environment the site produced a high level of satisfaction and usability for the registered nurse end-users. Additionally, the results showed that the website significantly improved delirium knowledge & recognition scores and the improvement in delirium knowledge was retained at a two month follow-up. Given the strong effect of the intervention the online delirium intervention should be utilised as a way of providing information to registered nurses. It is envisaged that this knowledge would lead to improved recognition of delirium as well as improvement in patient outcomes however; translation of this knowledge attainment into clinical practice was outside the scope of this study. A critical next step is demonstrating the effect of the intervention in changing clinical behaviour, and improving patient health outcomes.
Resumo:
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
Resumo:
While there is evidence that science and non-science background students display small differences in performance in basic and clinical sciences, early in a 4-year, graduate entry medical program, this lessens with time. With respect to anatomy knowledge, there are no comparable data as to the impact previous anatomy experience has on the student perception of the anatomy practical learning environment. A study survey was designed to evaluate student perception of the anatomy practical program and its impact on student learning, for the initial cohort of a new medical school. The survey comprised 19 statements requiring a response using a 5-point Likert scale, in addition to a free text opportunity to provide opinion of the perceived educational value of the anatomy practical program. The response rate for a total cohort of 82 students was 89%. The anatomy practical program was highly valued by the students in aiding their learning of anatomy, as indicated by the high mean scores for all statements (range: 4.04-4.7). There was a significant difference between the students who had and had not studied a science course prior to entering medicine, with respect to statements that addressed aspects of the course related to its structure, organization, variety of resources, linkage to problem-based learning cases, and fairness of assessment. Nonscience students were more positive compared to those who had studied science before (P levels ranging from 0.004 to 0.035). Students less experienced in anatomy were more challenged in prioritizing core curricular knowledge. © 2011 Wiley-Liss, Inc.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
The evolution of new technology and its increasing use, have for some years been making the existence of informal learning more and more transparent, especially among young and older adults in both Higher Education and workplace contexts. However, the nature of formal and non-formal, course-based, approaches to learning has made it hard to accommodate these informal processes satisfactorily, and although technology bring us near to the solution, it has not yet achieved. TRAILER project aims to address this problem by developing a tool for the management of competences and skills acquired through informal learning experiences, both from the perspective of the user and the institution or company. This paper describes the research and development main lines of this project.
Resumo:
One group of 12 non learning disabled students and two groups of 12 learning disabled students between the ges of 10 and 12 were measured on implicit and explicit knowledge cquisition. Students in each group implicitly cquired knowledge bout I of 2 vocabulary rules. The vocabulary rules governed the pronunciation of 2 types of pseudowords. After completing the implicit acquisition phase, all groups were administered a test of implicit knowledge. The non learning disabled group and I learning disabled group were then asked to verbalize the knowledge acquired during the initial phase. This was a test of explicit knowledge. All 3 groups were then given a postlest of implicit knowledge. This tcst was a measure of the effectiveness of the employment of the verbalization technique. Results indicate that implicit knowledge capabilities for both the learning disabled and non learning disabled groups were intact. However. there were significant differences between groups on explicit knowledge capabilities. This led to the conclusion that implicit functions show little individual differences, and that explicit functions are affected by ability difference. Furthermore, the employment of the verbalization technique significantly increased POStlest scores for learning disabled students. This suggested that the use of metacognitive techniques was a beneficial learning tool for learning disabled students.
Resumo:
Background. In separate studies and research from different perspectives, five factors are found to be among those related to higher quality outcomes of student learning (academic achievement). Those factors are higher self-efficacy, deeper approaches to learning, higher quality teaching, students’ perceptions that their workload is appropriate, and greater learning motivation. University learning improvement strategies have been built on these research results. Aim. To investigate how students’ evoked prior experience, perceptions of their learning environment, and their approaches to learning collectively contribute to academic achievement. This is the first study to investigate motivation and self-efficacy in the same educational context as conceptions of learning, approaches to learning and perceptions of the learning environment. Sample. Undergraduate students (773) from the full range of disciplines were part of a group of over 2,300 students who volunteered to complete a survey of their learning experience. On completing their degrees 6 and 18 months later, their academic achievement was matched with their learning experience survey data. Method. A 77-item questionnaire was used to gather students’ self-report of their evoked prior experience (self-efficacy, learning motivation, and conceptions of learning), perceptions of learning context (teaching quality and appropriate workload), and approaches to learning (deep and surface). Academic achievement was measured using the English honours degree classification system. Analyses were conducted using correlational and multi-variable (structural equation modelling) methods. Results. The results from the correlation methods confirmed those found in numerous earlier studies. The results from the multi-variable analyses indicated that surface approach to learning was the strongest predictor of academic achievement, with self-efficacy and motivation also found to be directly related. In contrast to the correlation results, a deep approach to learning was not related to academic achievement, and teaching quality and conceptions of learning were only indirectly related to achievement. Conclusions. Research aimed at understanding how students experience their learning environment and how that experience relates to the quality of their learning needs to be conducted using a wider range of variables and more sophisticated analytical methods. In this study of one context, some of the relations found in earlier bivariate studies, and on which learning intervention strategies have been built, are not confirmed when more holistic teaching–learning contexts are analysed using multi-variable methods.
Resumo:
Recent theoretical writings suggest that the ineffective regulation of negative emotional states may reduce the ability of women to detect and respond effectively to situational and interpersonal factors that increase risk for sexual assault. However, little empirical research has explored this hypothesis. In the present study, it was hypothesized that prior sexual victimization and negative mood state would each independently predict poor risk recognition and less effective defensive actions in response to an analogue sexual assault vignette. Further, these variables were expected to interact to produce particularly impaired risk responses. Finally, that the in vivo emotion regulation strategy of suppression and corresponding cognitive resource usage (operationalized as memory impairment for the vignette) were hypothesized to mediate these associations. Participants were 668 female undergraduate students who were randomly assigned to receive a negative or neutral film mood induction followed by an audiotaped dating interaction during which they were instructed to indicate when the man had “gone too far” and describe an adaptive response to the situation. Approximately 33.5% of the sample reported a single victimization and 10% reported revictimization. Hypotheses were largely unsupported as sexual victimization history, mood condition, and their interaction did not impact risk recognition or adaptive responding. However, in vivo emotional suppression and cognitive resource usage were shown to predict delayed risk recognition only. Findings suggest that contrary to hypotheses, negative mood (as induced here) may not relate to risk recognition and response impairments. However, it may be important for victimization prevention programs that focus on risk perception to address possible underlying issues with emotional suppression and limited cognitive resources to improve risk perception abilities. Limitations and future directions are discussed.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.