892 resultados para rank transform
Resumo:
The rank transform is one non-parametric transform which has been applied to the stereo matching problem The advantages of this transform include its invariance to radio metric distortion and its amenability to hardware implementation. This paper describes the derivation of the rank constraint for matching using the rank transform Previous work has shown that this constraint was capable of resolving ambiguous matches thereby improving match reliability A new matching algorithm incorporating this constraint was also proposed. This paper extends on this previous work by proposing a matching algorithm which uses a dimensional match surface in which the match score is computed for every possible template and match window combination. The principal advantage of this algorithm is that the use of the match surface enforces the left�right consistency and uniqueness constraints thus improving the algorithms ability to remove invalid matches Experimental results for a number of test stereo pairs show that the new algorithm is capable of identifying and removing a large number of in incorrect matches particularly in the case of occlusions
Resumo:
The rank transform is a non-parametric technique which has been recently proposed for the stereo matching problem. The motivation behind its application to the matching problem is its invariance to certain types of image distortion and noise, as well as its amenability to real-time implementation. This paper derives an analytic expression for the process of matching using the rank transform, and then goes on to derive one constraint which must be satisfied for a correct match. This has been dubbed the rank order constraint or simply the rank constraint. Experimental work has shown that this constraint is capable of resolving ambiguous matches, thereby improving matching reliability. This constraint was incorporated into a new algorithm for matching using the rank transform. This modified algorithm resulted in an increased proportion of correct matches, for all test imagery used.
Resumo:
A fundamental problem faced by stereo matching algorithms is the matching or correspondence problem. A wide range of algorithms have been proposed for the correspondence problem. For all matching algorithms, it would be useful to be able to compute a measure of the probability of correctness, or reliability of a match. This paper focuses in particular on one class for matching algorithms, which are based on the rank transform. The interest in these algorithms for stereo matching stems from their invariance to radiometric distortion, and their amenability to fast hardware implementation. This work differs from previous work in that it derives, from first principles, an expression for the probability of a correct match. This method was based on an enumeration of all possible symbols for matching. The theoretical results for disparity error prediction, obtained using this method, were found to agree well with experimental results. However, disadvantages of the technique developed in this chapter are that it is not easily applicable to real images, and also that it is too computationally expensive for practical window sizes. Nevertheless, the exercise provides an interesting and novel analysis of match reliability.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Practical applications for stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics and industrial automation. The initial motivation behind this work was to produce a stereo vision sensor for mining automation applications. For such applications, the input stereo images would consist of close range scenes of rocks. A fundamental problem faced by matching algorithms is the matching or correspondence problem. This problem involves locating corresponding points or features in two images. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This work implemented a number of areabased matching algorithms to assess their suitability for this application. Area-based techniques were investigated because of their potential to yield dense depth maps, their amenability to fast hardware implementation, and their suitability to textured scenes such as rocks. In addition, two non-parametric transforms, the rank and census, were also compared. Both the rank and the census transforms were found to result in improved reliability of matching in the presence of radiometric distortion - significant since radiometric distortion is a problem which commonly arises in practice. In addition, they have low computational complexity, making them amenable to fast hardware implementation. Therefore, it was decided that matching algorithms using these transforms would be the subject of the remainder of the thesis. An analytic expression for the process of matching using the rank transform was derived from first principles. This work resulted in a number of important contributions. Firstly, the derivation process resulted in one constraint which must be satisfied for a correct match. This was termed the rank constraint. The theoretical derivation of this constraint is in contrast to the existing matching constraints which have little theoretical basis. Experimental work with actual and contrived stereo pairs has shown that the new constraint is capable of resolving ambiguous matches, thereby improving match reliability. Secondly, a novel matching algorithm incorporating the rank constraint has been proposed. This algorithm was tested using a number of stereo pairs. In all cases, the modified algorithm consistently resulted in an increased proportion of correct matches. Finally, the rank constraint was used to devise a new method for identifying regions of an image where the rank transform, and hence matching, are more susceptible to noise. The rank constraint was also incorporated into a new hybrid matching algorithm, where it was combined a number of other ideas. These included the use of an image pyramid for match prediction, and a method of edge localisation to improve match accuracy in the vicinity of edges. Experimental results obtained from the new algorithm showed that the algorithm is able to remove a large proportion of invalid matches, and improve match accuracy.
Resumo:
A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints,including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing a significant proportion of invalid matches. The accuracy of matching in the vicinity of edges is also improved.
Resumo:
A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints, including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing most invalid matches. The accuracy of matching in the vicinity of edges is also improved.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.
Resumo:
Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The authors present a qualitative and quantitative comparison of various similarity measures that form the kernel of common area-based stereo-matching systems. The authors compare classical difference and correlation measures as well as nonparametric measures based on the rank and census transforms for a number of outdoor images. For robotic applications, important considerations include robustness to image defects such as intensity variation and noise, the number of false matches, and computational complexity. In the absence of ground truth data, the authors compare the matching techniques based on the percentage of matches that pass the left-right consistency test. The authors also evaluate the discriminatory power of several match validity measures that are reported in the literature for eliminating false matches and for estimating match confidence. For guidance applications, it is essential to have and estimate of confidence in the three-dimensional points generated by stereo vision. Finally, a new validity measure, the rank constraint, is introduced that is capable of resolving ambiguous matches for rank transform-based matching.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.
A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.
The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.
From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.
Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.
Resumo:
Die Voraussetzunen der parametrischen 1- und mehrfaktoriellen Varianzanalyse, mit und ohne Messwiederholungen, werden besprochen. Ferner werden eine Reihe von alternativen Verfahren vorgestellt, insbesondere einige nichtparametrische, darunter RT (rank transform), INT (inverse normal transform), ART (aligned rank transform), Puri & Sen (L statistic), van der Waerden und Akritas & Brunner (ATS anova type statistic), die sich auf die parametrische Varianzanalyse zurückführen lassen, sowie dichotome und ordinale logistische Regression. Hierzu werden Lösungen mit R und SPSS ausführlich gezeigt.