848 resultados para random oracle model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Client puzzles are cryptographic problems that are neither easy nor hard to solve. Most puzzles are based on either number theoretic or hash inversions problems. Hash-based puzzles are very efficient but so far have been shown secure only in the random oracle model; number theoretic puzzles, while secure in the standard model, tend to be inefficient. In this paper, we solve the problem of constucting cryptographic puzzles that are secure int he standard model and are very efficient. We present an efficient number theoretic puzzle that satisfies the puzzle security definition of Chen et al. (ASIACRYPT 2009). To prove the security of our puzzle, we introduce a new variant of the interval discrete logarithm assumption which may be of independent interest, and show this new problem to be hard under reasonable assumptions. Our experimental results show that, for 512-bit modulus, the solution verification time of our proposed puzzle can be up to 50x and 89x faster than the Karame-Capkum puzzle and the Rivest et al.'s time-lock puzzle respectively. In particular, the solution verification tiem of our puzzle is only 1.4x slower than that of Chen et al.'s efficient hash based puzzle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a short signature scheme that is strongly existentially unforgeable under an adaptive chosen message attack in the standard security model. Our construction works in groups equipped with an efficient bilinear map, or, more generally, an algorithm for the Decision Diffie-Hellman problem. The security of our scheme depends on a new intractability assumption we call Strong Diffie-Hellman (SDH), by analogy to the Strong RSA assumption with which it shares many properties. Signature generation in our system is fast and the resulting signatures are as short as DSA signatures for comparable security. We give a tight reduction proving that our scheme is secure in any group in which the SDH assumption holds, without relying on the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.