837 resultados para population model
Resumo:
This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.
Resumo:
BACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Especialização em Ecologia e Conservação, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.
Resumo:
The distribution and abundance of the American crocodile (Crocodylus acutus) in the Florida Everglades is dependent on the timing, amount, and location of freshwater flow. One of the goals of the Comprehensive Everglades Restoration Plan (CERP) is to restore historic freshwater flows to American crocodile habitat throughout the Everglades. To predict the impacts on the crocodile population from planned restoration activities, we created a stage-based spatially explicit crocodile population model that incorporated regional hydrology models and American crocodile research and monitoring data. Growth and survival were influenced by salinity, water depth, and density-dependent interactions. A stage-structured spatial model was used with discrete spatial convolution to direct crocodiles toward attractive sources where conditions were favorable. The model predicted that CERP would have both positive and negative impacts on American crocodile growth, survival, and distribution. Overall, crocodile populations across south Florida were predicted to decrease approximately 3 % with the implementation of CERP compared to future conditions without restoration, but local increases up to 30 % occurred in the Joe Bay area near Taylor Slough, and local decreases up to 30 % occurred in the vicinity of Buttonwood Canal due to changes in salinity and freshwater flows.
Resumo:
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.
Resumo:
Demographic composition and dynamics of animal and human populations are important determinants for the transmission dynamics of infectious disease and for the effect of infectious disease or environmental disasters on productivity. In many circumstances, demographic data are not available or of poor quality. Since 1999 Switzerland has been recording cattle movements, births, deaths and slaughter in an animal movement database (AMD). The data present in the AMD offers the opportunity for analysing and understanding the dynamic of the Swiss cattle population. A dynamic population model can serve as a building block for future disease transmission models and help policy makers in developing strategies regarding animal health, animal welfare, livestock management and productivity. The Swiss cattle population was therefore modelled using a system of ordinary differential equations. The model was stratified by production type (dairy or beef), age and gender (male and female calves: 0-1 year, heifers and young bulls: 1-2 years, cows and bulls: older than 2 years). The simulation of the Swiss cattle population reflects the observed pattern accurately. Parameters were optimized on the basis of the goodness-of-fit (using the Powell algorithm). The fitted rates were compared with calculated rates from the AMD and differed only marginally. This gives confidence in the fitted rates of parameters that are not directly deductible from the AMD (e.g. the proportion of calves that are moved from the dairy system to fattening plants).
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.
Resumo:
Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.
Resumo:
Objectifs : Définir les paramètres pharmacocinétiques du pantoprazole intraveineux en soins intensifs pédiatriques et déterminer l’influence qu’exercent sur ceux-ci les facteurs démographiques, le syndrome de réponse inflammatoire systémique (SRIS), la dysfonction hépatique et l’administration d’un inhibiteur du cytochrome (CYP) 2C19. Méthode : Cent cinquante-six concentrations plasmatiques de pantoprazole provenant d’une population de 20 patients (âgés de 10 jours à 16.4 ans) à risque ou atteints d’une hémorragie gastroduodénale de stress, ayant reçu des doses quotidiennes de pantoprazole de 19.9 à 140.6 mg/1.73m2, ont été analysées selon les méthodes non compartimentale et de modélisation non linéaire à effets mixtes. Résultats : Une clairance médiane (CL) de 0.14 L/h/kg, un volume apparent de distribution de 0.20 L/kg et une demi-vie d’élimination de 1.7 h ont été déterminés via l’approche non compartimentale. Le modèle populationnel à deux compartiments avec une infusion d’ordre zéro et une élimination d’ordre un représentait fidèlement la cinétique du pantoprazole. Le poids, le SRIS, la dysfonction hépatique et l’administration d’un inhibiteur du CYP2C19 constituaient les covariables significatives rendant compte de 75 % de la variabilité interindividuelle observée pour la CL. Seul le poids influençait significativement le volume central de distribution (Vc). Selon les estimations du modèle final, un enfant de cinq ans pesant 20 kg avait une CL de 5.28 L/h et un Vc de 2.22 L. La CL du pantoprazole augmentait selon l’âge et le poids tandis qu’elle diminuait respectivement de 62.3%, 65.8% et 50.5% en présence d’un SRIS, d’un inhibiteur du CYP2C19 ou d’une dysfonction hépatique. Conclusion : Ces résultats permettront de guider les cliniciens dans le choix d’une dose de charge et dans l’ajustement des posologies du pantoprazole en soins intensifs pédiatriques dépendamment de facteurs fréquemment rencontrés dans cette population.
Resumo:
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.