954 resultados para plastic shrinkage


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ongoing use of various mineral additions along with chemical admixtures such as superplasticizers justifies the need for further research. Understanding and quantifying their effects and possible synergies on the fresh and hardened properties of cement-based materials is necessary, especially if some of these components are known to have a pozzolanic effect. This paper describes and models the fresh and hardened properties of cement mortars including nanosilica and fly ash, and relates their properties to the proportioning of these materials and the superplasticizer dosage. Mini-slump, Marsh cone and Lombardi cone tests were used to examine the properties of the fresh mortars, and to assess density, plastic shrinkage, and drying shrinkage up to 20 days. The equations presented in this paper make it possible to optimize mortar proportionings to the required levels of performance in both fresh and hardened states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of colloidal nanosilica on the fresh and rheological parameters, plastic shrinkage, heat of hydration, and compressive strength of cement-based grouts is investigated in this paper. The fresh and rheological properties were evaluated by the minislump flow, Marsh cone flow time, Lombardi plate cohesion meter, yield value, and plastic viscosity. The key parameters investigated were the dosages of nanosilica and superplasticizer and temperature of mixing water. Statistical models and isoresponse curves were developed to capture the significant trends. The dosage of nanosilica had a significant effect on the results. The increase in the dosage of nanosilica led to increasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while reducing the minislump, plastic shrinkage up 24 h, and compressive strength at 3, 7, and 28 days. Conversely, the increase in the dosage of superplasticizer led to decreasing the values of flow time, plate cohesion meter, yield stress, plastic viscosity, heat of hydration at 1 day and 3 days, and compressive strength at 1 day, while increasing the minislump, plastic shrinkage, and compressive strength at 3 and 7 days. Increasing the temperature of mixing water led to a notable increase in the results of minislump, flow time, plastic viscosity, heat of hydration at 3 days, and compressive strength at 1 day, while it reduced the plate cohesion, compressive strength at 3, 7, and 28 days. The statistical models developed in this study can facilitate optimizing the mixture proportions of grouts for target performance by reducing the number of trial batches needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho, foi desenvolvido um novo material compósito utilizando-se como matriz a argamassa de cimento reforçado com fibra de sisal a 1% em peso, que foram cortadas manualmente nos comprimentos de 15 mm e 25 mm utilizadas sem tratamento superficial utilizando-se o menor nível possível de processamento tecnológico nas etapas de fabricação. A pesquisa foi direcionada para estudar os mecanismos de falha desse novo material. Os compósitos foram produzidos com moldagem manual utilizando-se vibrador de imersão para melhor adensamento. Foram confeccionados corpos de prova da matriz pura e do compósito com fibra de sisal, com entalhes pré definidos, de 1,7 mm, 3,0 mm e 5,0 mm. As propriedades mecânicas foram avaliadas por ensaio de flexão em três pontos e correlacionadas com o aspecto fractográfico realizados no Microscópio Eletrônico de Varredura. Os resultados mostraram que a presença das fibras de sisal, inseridas na pasta de cimento, provocou restrição à retração plástica da mistura fresca, possivelmente pela elevada capacidade de absorção de água do reforço fibroso, um incremento na resistência mecânica e aumento da tenacidade do compósito em relação a matriz entre as séries de entalhes, diminuindo a tendência de fratura brusca.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigated the influence of the amount of superplasticizer and mineral adding - silica fume and basaltic filer - in plastic shrinkage and cracking of self-compacting concrete (SCC) mortars. Initially analysis was performed of the rheological behavior of cement paste and mortars phases of the compositions of SCC. Then the deformations of mortars were measured by the effect of shrinkage and evaluation of cracking. On plastic shrinkage and cracking, the composition with silica fume showed superior results, independent of wind and superplasticizer content, relative to the composition with addition of basalt filler. However, the composition with silica fume showed superior results only in the tests with imposed ventilation at vertical plastic deformation. The rheological behavior affected directly the plastic shrinkage and cracking at early ages, fact confirmed by the analysis of capillary pressures of mortars tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic wastes, and particularly plastic bags and sachets, are a major concern for urban and rural environment in African countries. In the last years some actions have been started for the plastic recycling like the artisanal production of paving blocks with melted plastic bags and sand, albeit with differences in production processes. Nevertheless, the environmental and economic impact of such activities is still to be confirmed. The aim of this study is to propose a methodology for assessing and comparing the environmental and energetic performances of artisanal methods, and for defining the overall quality of the produced blocks. This methodology has been shaped through the analysis of
production processes operated by artisans/small enterprises in West Africa and through physic-mechanical tests on the blocks. A questionnaire which allows an insight into the process and on the product has been developed and tested over five processes. Results show that a high input energy level is observed through all the processes, while considerable savings of energy could be achieved. Moreover, tests results confirmed the importance of the utilised plastic concerning thermal dilatation, mechanical resistance at higher temperature and cooling-shrinkage effects. In conclusion, doubts remain about the technical and environmental effectiveness of the sampled experiences, durability of the products and sustainability of this approach. Nevertheless, being the collection and recycling of plastic wastes a potential income generation activity for marginalised social groups in urban environment, a process optimisation could improve the impact of blocks production. Alternative recycling activities should also be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To track down potential sites of material failure in the tile–mortar–substrate systems, locations and intensities of stress concentrations owing to drying-induced shrinkage are investigated. For this purpose, mechanical properties were measured on real systems and used as input parameters for numerical modeling of the effect of shrinkage of substrate and/or mortar using the finite element code Abaqus. On the base of different geometrical set-ups we demonstrate that stress concentrations in the mortar can become critical when (i) substantial mortar shrinkage occurs, (ii) substrate shrinkage can accumulate over considerable spatial distances, particularly (iii) in situations where the mortar layer is not separated from the substrate by a flexible waterproofing membrane. Hence material failure in the system tile–mortar–substrate can be prevented (or reduced) by (i) an application of the tiles after the major stages of substrate shrinkage, (ii) the use of elasto-plastic deformable tile adhesives which can react elastically on local stress concentrations, (iii) the implementation of flexible membranes, and (iv) a reduction of the field size by the installation of flexible joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ACI recommendations for the prevention of cracking of plastic concrete attempt to eliminate such cracking by ensuring that the rate of evaporation from unprotected concrete surfaces does not exceed the estimated rate of bleed water production. The current recommendations, however do not account for the large scatter of the underlying experimental evaporation data nor the effect of altitude on evaporation rate. Ignoring the scatter of the evaporation data frequently leads to an unacceptably high probability that the evaporation rate will exceed the bleed rate. Ignoring the effect of altitude leads to similar high probabilities, but in only a comparatively small number of cases. Simple modifications of the ACI recommendations are suggested that can account for both effects. However; insufficient data on the variability of bleed rates are currently available to allow the scatter of the evaporation data to be accounted for completely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic cracking of cement mortar and concrete is primarily attributable to desiccation by evaporation from unprotected surfaces. This causes high suctions (negative pressures) to develop in the pore water adjacent to these surfaces. Dissolved salts in the pore water can also contribute significantly to suctions. Quantitative expressions are available for all of the components of the total suction. The development of suctions over time is illustrated by the results of desiccation tests conducted on cement mortars, supplemented by data from the literature. It is shown that ambient conditions conducive to plastic cracking can arise almost anywhere, but that the extremely high suctions that develop in mature cement mortar and concrete do not imply that compression failures should occur A high value of fracture energy is derived from data from the desiccation tests that implies that plastic cracking is characterized by a significant zone of plastic straining or microcracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The depths of cracks in desiccating plastic concrete are estimated by considering the effects of the suction (negative pore pressure) associated with desiccation and applying five failure models derived from fracture, theories combined with theories drawn from geotechnical engineering under the assumption that plastic concrete is a frictional particulate material. The estimated crack depths vary with the depth of desiccation, the suction profile, and a small number of material parameters that depend on the model adopted and are comparatively easy to estimate accurately. Four of the models predict excessively large crack depths. The fifth, however, predicts shallower crack depths that increase with the age of the concrete and are consistent with those of analogous desiccation cracks in coal mine tailings. It thus offers a relatively robust method of estimating the depth of desiccation cracks. Confirmation of this with data for plastic concrete is clearly desirable but not possible at present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shrinkage cracking is commonly observed in concrete flat structures such as highway pavements, slabs, and bridge decks. Crack spacing due to shrinkage has received considerable attention for many years [1-3]. However, some aspects concerning the mechanism of crack spacing still remain un-clear. Though it is well known that the interval of the cracks generally falls with a range, no satisfactory explanation has been put forward as to why the minimum spacing exists.