999 resultados para numeri complessi riforma Gelmini storia della matematica TIMMS indicazioni nazionali
Resumo:
La tesi riguarda la didattica della matematica e parla del modo di fare didattica negli istituti secondari di secondo grado attraverso l'analisi di un caso particolare: la didattica dei numeri complessi. La didattica verrà analizzata per prima cosa a livello generale attraverso l'esposizione dei punti principali della riforma Gelmini, e, successivamente, in particolare attraverso l'analisi della didattica dei numeri complessi nei licei scientifici. Di quest'ultima verranno presentati: gli strumenti con cui viene svolta, la modalità con cui vengono presentati i concetti, un nuovo metodo per migliorarla e, infine, il modo in cui i ragazzi la percepiscono. Questi elementi si traducono, rispettivamente, nell'analisi del libro `Matematica a colori', nell'esposizione di una lezione-tipo, nella proposta dell'utilizzo della storia della matematica e infine in un questionario posto agli alunni. Quanto emerso verrà confrontato con le indicazioni nazionali di alcuni stati esteri e il tutto verrà utilizzato per `leggere' i risultati del TIMMS ADVANCED 2008.
Resumo:
Mode of access: Internet.
Resumo:
Translation of: History of the Protestant Reformation in England & Ireland.
Resumo:
L'origine e lo sviluppo del concetto di numero trascendente attraversano quasi tutta la storia della matematica ed i risultati più importanti si sono ottenuti solo in tempi relativamente recenti. I numeri trascendenti costituiscono un argomento che ha sempre affascinato i matematici ma fino a poco tempo fa, in una prospettiva di epoche storiche, si conoscevano pochissimi esempi di numeri di cui si sapesse dimostrare la trascendenza. La dimostrazione della trascendenza di pi greco mette fine ai tentativi di risolvere per via elementare la quadratura del cerchio, uno dei problemi classici dell'antichità. Scopo di questa tesi è presentare delle dimostrazioni di esistenza dei numeri trascendenti utilizzabili anche a scopo didattico e dimostrare la trascendenza del numero di Nepero e di pi greco. Ho deciso, inoltre, nel mio lavoro di tesi, di ripercorrere le tappe principali dell'evoluzione storica del concetto di numero trascendente ed ho analizzato quelle che oltre ad essere di grande importanza storica, sono utili ad una migliore comprensione del concetto stesso. La presentazione di queste tappe può essere molto importante, a mio parere, da un punto di vista didattico in quanto i testi di matematica mostrano quasi sempre concetti e teoremi come entità assolute e immutabili, inserite nei giorni nostri, senza fare riferimento al contesto storico ed umano in cui le idee sono nate.
Resumo:
L'elaborato tratta degli automorfismi del campo dei numeri complessi C; in particolare analizza tre proprietà fondamentali. 1) Gli automorfismi "selvaggi" fissano Q e mandano R\Q in un sottoinsieme denso di C 2) Ogni automorfismo di un sottocampo di C può essere esteso ad un automorfismo di C 3) La cardinalità dell'insieme degli automorfismi di C è 2^{2^{\aleph_0}}. Per dimostrare l'ultimo punto sono necessari prerequisiti relativi alle basi di trascendenza, prerequisiti che sono esposti nella prima parte della tesi.
Resumo:
"Cosa ci fa un matematico in una casa editrice?" è la comprensibile domanda che mi è stata fatta quasi ogni volta che ho raccontato la mia esperienza di tirocinio presso la Edizioni Dedalo. L'oggetto del presente elaborato è rispondere a questa domanda, un pretesto per poter presentare la comunicazione della matematica a tutto tondo. Oltre a descrivere in cosa è consistito il tirocinio, viene presentato un breve excursus sulla nascita della comunicazione scientifica, al fine di capirne l'importanza da una parte per la democratizzazione del sapere, dall'altra per lo sviluppo della scienza stessa, due aspetti fortemente interdipendenti, esaminando esempi storici da cui si evince tanto il peso della presenza quanto quello dell'assenza di una buona comunicazione. Viene analizzata la teoria per cui il salto qualitativo per la produzione scientifica avviene non a caso all'indomani dell'invenzione della stampa a caratteri mobili. Vengono forniti elementi di teoria della comunicazione, sottolineandone le differenze e i punti di contatto con la didattica, con l'aiuto di interviste a protagonisti della divulgazione e della comunicazione scientifica come Anna Cerasoli, Roberta Fulci, Eleonora Pellegrini e Paolo Zellini.
Resumo:
L'elaborato rappresenta una ricerca dal punto di vista storico di alcuni temi centrali riguardanti la meccanica classica: si concentra in particolare sulla figura di Newton e i Principia, tratta di alcuni suoi predecessori ed osserva diverse critiche a favore o sfavore successive al lavoro dello scienziato.
Resumo:
La letteratura mostra come siano innumerevoli le difficoltà e gli ostacoli nell'apprendimento del concetto di limite: la ricerca è volta ad ipotizzare un possibile aiuto e supporto alla didattica con l'utilizzo della storia della matematica relativa al concetto di limite.
Resumo:
Questa tesi ripercorre le tappe principali della storia della scuola secondaria italiana, soffermandosi su quelle che hanno caratterizzato l'insegnamento della matematica. Inoltre analizza le caratteristiche delle prove di matematica assegnate alla maturità scientifica fin dalla nascita dell'esame di Stato.
Resumo:
L’impiego della storia della matematica è auspicato oggi più di ieri dalle attuali Indicazioni nazionali per i Licei ed è supportato da numerosi quadri teorici,che traghettano la storia della matematica dalle rive dell’essere artefatto all’essere conoscenza. In particolare nel secondo paragrafo del primo capitolo di questa tesi vengono presentati gli ostacoli epistemologici di Guy Brousseau, l’approccio socio-culturale di Louis Radford, l’approccio ”voci ed echi” di Paolo Boero ed infine lo spaesamento di Barbin. Nel terzo paragrafo vengono analizzati quei contributi che mirano a rendere più operativo l’entusiasmo suscitato dall’uso della storia nell’insegnamento della matematica. Quindi il primo capitolo ha l’obiettivo di porre le basi teoriche all’uso della storia nella trasmissione del sapere matematico; pertanto ho deciso di mettere a punto una sperimentazione da condurre in una classe seconda di Liceo Scientifico avente come oggetto una fonte storica. Come argomento è stato scelto l’irrazionalità, introdotto in tale trattazione nel secondo capitolo: nel primo paragrafo viene trattato il problema della nascita dell’incommensurabilità, mentre nel secondo vengono analizzate le numerose dimostrazioni che sono state proposte nel corso dei secoli in merito all’incommensurabilità di lato e diagonale di un quadrato partendo da Aristotele ed Euclide, passando per Alessandro d’Aforisia e Platone, attraversando le dimostrazioni geometriche e quelle che sfruttano il metodo dell’anthyphairesis, per giungere ad una dimostrazione moderna che non presta il fianco alle critiche aristoteliche proposte da Salomon Ofman. Nel terzo capitolo viene presentata la sperimentazione che ho condotto, anteponendo a ciò i criteri adottati per la scelta del brano, ossia le lezione di Geometria tratta dal Menone di Platone ed un breve tributo alla figura di Platone e alla sua opera da cui è tratto il brano scelto come fonte storica. Tale capitolo è articolato in tre paragrafi: nel terzo vengono descritte dettagliatamente tutte le attività condotte in classe e vengono presentati i lavori e le risposte degli studenti. Infine, nel quarto capitolo, vengono esaminati dettagliatamente i risultati dei ragazzi alla luce dei quadri teorici precedentemente introdotti e vengono messe in luce le peculiarità dell’attività dell’argomentare e le doti e mancanze relative a ciò degli studenti.
Resumo:
Collection : Bibliothèque de l'Institut français de Florence ; 1
Resumo:
UANL