983 resultados para mercury cadmium lead removal petroleum demetalation ionic liq


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three commonly consumed and commercially valuable fish species (sardine, chub and horse mackerel) were collected from the Northeast and Eastern Central Atlantic Ocean in Portuguese waters during one year. Mercury, cadmium, lead and arsenic amounts were determined in muscles using graphite furnace and cold vapour atomic absorption spectrometry. Maximum mean levels of mercury (0.1715 ± 0.0857 mg/kg, ww) and arsenic (1.139 ± 0.350 mg/kg, ww) were detected in horse mackerel. The higher mean amounts of cadmium (0.0084 ± 0.0036 mg/kg, ww) and lead (0.0379 ± 0.0303 mg/kg, ww) were determined in chub mackerel and in sardine, respectively. Intra- and inter-specific variability of metals bioaccumulation was statistically assessed and species and length revealed to be the major influencing biometric factors, in particular for mercury and arsenic. Muscles present metal concentrations below the tolerable limits considered by European Commission Regulation and Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). However, estimation of non-carcinogenic and carcinogenic health risks by the target hazard quotient and target carcinogenic risk, established by the US Environmental Protection Agency, suggests that these species must be eaten in moderation due to possible hazard and carcinogenic risks derived from arsenic (in all analyzed species) and mercury ingestion (in horse and chub mackerel species).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quartz crystal microbalance modified by the attachment of silica particles derivatized with the aminopolycarboxylate ligand N-[(3-trimethoxysilyl)propyl]ethylenediamine-N,N',N'-triacetic acid has been employed to assess conditions under which mercury (II), lead (II), and silver (I) nitrates may be separated in aqueous solution. The separation protocol, which involved removal of Hg(II), as [HgI4](2-), and Pb(II) with H+ was successfully applied to a batchwise separation of the 3 metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work aims to study the use of peanut hulls, an agricultural and food industry waste, for copper and lead removal through equilibrium and kinetic parameters evaluation. Equilibrium batch studies were performed in a batch adsorber. The influence of initial pH was evaluated (3–5) and it was selected between 4.0 and 4.5. The maximum sorption capacities obtained for the Langmuir model were 0.21 ± 0.03 and 0.18 ± 0.02 mmol/g, respectively for copper and lead. In bi-component systems, competitive sorption of copper and lead was verified, the total amount adsorbed being around 0.21 mmol of metal per gram of material in both mono and bi-component systems. In the kinetic studies equilibrium was reached after 200 min contact time using a 400 rpm stirring rate, achieving 78% and 58% removal, in mono-component system, for copper and lead respectively. Their removal follows a pseudo-second-order kinetics. These studies show that most of the metals removal occurred in the first 20 min of contact, which shows a good uptake rate in all systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury and Lead concentrations obtained by ICP-OAS analysis of human hair from riverside communities along the Orinoco river in the Amazon state (Venezuela) were compared with those from Caracas, Venezuela. Taking into account the characteristics of these two environments and the values of the average concentrations of Mercury and Lead, baselines were established suggesting that gold mining activity near the Orinoco river is responsible for the high levels of Mercury in hair from the Amazon state, whereas automobile activity is responsible for high levels of Lead in hair in Caracas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus) is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contributions from the Chemical Laboratory of Harvard College."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 mu L of whole blood was diluted in 500 mu L of 0.2% (w v(-1)) Triton(R) X-100 + 2.0% (v v(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 mu g W + 200 mu g Rh as permanent and 2.0% (w v(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n = 20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 mu g L-1 and 0.65 mu g L-1, respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck(R) Whole Blood Metals Control level 1 and Seronorm(TM) Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 mu g L-1 (0.32 +/- 0.19 mu g L-1) for Cd and 9.3 to 56.7 mu g L-1 (25.1 +/- 10.8 mu g L-1) for Pb. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Microsc. Res. Tech. 74:287-291, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that acute third ventricle injections of both lead and cadmium prevent the dipsogenic response elicited by dehydration or by central injections of dipsogenic agents such as angiotensin II, carbachol and isoproterenol in rats. We have also shown that the antidipsogenic action of cadmium may be due, at least in part, to activation of thirst-inhibitory central serotonergic pathways. In the present paper we show that in Wistar male rats the antidipsogenic effect of both lead acetate (3.0 nmol/rat) and cadmium chloride (3.0 nmol/rat) may be partially dependent on the activation of brain opiatergic pathways since central injections of naloxone (82.5 nmol/rat), a non-selective opioid antagonist, blunt the thirst-inhibiting effect of these metals. One hundred and twenty minutes after the second third ventricle injections, dehydrated animals (14 h overnight) receiving saline + sodium acetate displayed a high water intake (7.90 ± 0.47 ml/100 g body weight) whereas animals receiving saline + lead acetate drank 3.24 ± 0.47 ml/100 g body weight. Animals receiving naloxone + lead acetate drank 6.94 ± 0.60 ml/100 g body weight. Animals receiving saline + saline drank 8.16 ± 0.66 ml/100 g body weight whilst animals receiving saline + cadmium chloride drank 1.63 ± 0.37 ml/100 g body weight. Animals receiving naloxone + cadmium chloride drank 8.01 ± 0.94 ml/100 g body weight. It is suggested that acute third ventricle injections of both lead and cadmium exert their antidipsogenic effect by activating thirst-inhibiting opioid pathways in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.