887 resultados para matrix data analytics
Resumo:
Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
Social media platforms are of interest to interactive entertainment companies for a number of reasons. They can operate as a platform for deploying games, as a tool for communicating with customers and potential customers, and can provide analytics on how players utilize the; game providing immediate feedback on design decisions and changes. However, as ongoing research with Australian developer Halfbrick, creators of $2 , demonstrates, the use of these platforms is not universally seen as a positive. The incorporation of Big Data into already innovative development practices has the potential to cause tension between designers, whilst the platform also challenges the traditional business model, relying on micro-transactions rather than an up-front payment and a substantial shift in design philosophy to take advantage of the social aspects of platforms such as Facebook.
Resumo:
Modern health information systems can generate several exabytes of patient data, the so called "Health Big Data", per year. Many health managers and experts believe that with the data, it is possible to easily discover useful knowledge to improve health policies, increase patient safety and eliminate redundancies and unnecessary costs. The objective of this paper is to discuss the characteristics of Health Big Data as well as the challenges and solutions for health Big Data Analytics (BDA) – the process of extracting knowledge from sets of Health Big Data – and to design and evaluate a pipelined framework for use as a guideline/reference in health BDA.
Resumo:
Road networks are a national critical infrastructure. The road assets need to be monitored and maintained efficiently as their conditions deteriorate over time. The condition of one of such assets, road pavement, plays a major role in the road network maintenance programmes. Pavement conditions depend upon many factors such as pavement types, traffic and environmental conditions. This paper presents a data analytics case study for assessing the factors affecting the pavement deflection values measured by the traffic speed deflectometer (TSD) device. The analytics process includes acquisition and integration of data from multiple sources, data pre-processing, mining useful information from them and utilising data mining outputs for knowledge deployment. Data mining techniques are able to show how TSD outputs vary in different roads, traffic and environmental conditions. The generated data mining models map the TSD outputs to some classes and define correction factors for each class.
Resumo:
It might still sound strange to dedicate an entire journal issue exclusively to a single internet platform. But it is not the company Twitter Inc. that draws our attention; this issue is not about a platform and its features and services. It is about its users and the ways in which they interact with one another via the platform, about the situations that motivate people to share their thoughts publicly, using Twitter as a means to reach out to one another. And it is about the digital traces people leave behind when interacting with Twitter, and most of all about the ways in which these traces – as a new type of research data – can also enable new types of research questions and insights.
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
Big data analysis in healthcare sector is still in its early stages when comparing with that of other business sectors due to numerous reasons. Accommodating the volume, velocity and variety of healthcare data Identifying platforms that examine data from multiple sources, such as clinical records, genomic data, financial systems, and administrative systems Electronic Health Record (EHR) is a key information resource for big data analysis and is also composed of varied co-created values. Successful integration and crossing of different subfields of healthcare data such as biomedical informatics and health informatics could lead to huge improvement for the end users of the health care system, i.e. the patients.
Resumo:
With the ever increasing amount of eHealth data available from various eHealth systems and sources, Health Big Data Analytics promises enticing benefits such as enabling the discovery of new treatment options and improved decision making. However, concerns over the privacy of information have hindered the aggregation of this information. To address these concerns, we propose the use of Information Accountability protocols to provide patients with the ability to decide how and when their data can be shared and aggregated for use in big data research. In this paper, we discuss the issues surrounding Health Big Data Analytics and propose a consent-based model to address privacy concerns to aid in achieving the promised benefits of Big Data in eHealth.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.
Resumo:
We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.
Resumo:
Resources from the Singapore Summer School 2014 hosted by NUS. ws-summerschool.comp.nus.edu.sg
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.