919 resultados para locking speed
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Recently, there is a great interest in pushing communication technologies to 100 Gb/s. However, there are still many challenges to perform high speed (> 40 Gb/s) clock and data recovery, and data time-division-multiplexing (TDM). Here, we propose and numerically analyze an asynchronous optical packet retimer using parabolic or sinusoidal phase modulation and linear dispersion. This scheme is named pulse position locking (PPL). Numerical simulation shows that this scheme can effectively resynchronize input signals with arbitrary delays to the local clock, and reduce input jitter. The scheme can also be applied to TDM 10 Gb/s and 40 Gb/s signals to over 100 Gb/s.
Resumo:
Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.
In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.
Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.
Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.
Resumo:
High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.
Resumo:
We explored possible effects of negative covariation among finger forces in multifinger accurate force production tasks on the classical Fitts's speed-accuracy trade-off. Healthy subjects performed cyclic force changes between pairs of targets ""as quickly and accurately as possible."" Tasks with two force amplitudes and six ratics of force amplitude to target size were performed by each of the four fingers of the right hand and four finger combinations. There was a close to linear relation between movement time and the log-transformed ratio of target amplitude to target size across all finger combinations. There was a close to linear relation between standard deviation of force amplitude and movement time. There were no differences between the performance of either of the two ""radial"" fingers (index and middle) and the multifinger tasks. The ""ulnar"" fingers (little and ring) showed higher indices of variability and longer movement times as compared with both ""radial"" fingers and multifinger combinations. We conclude that potential effects of the negative covariation and also of the task-sharing across a set of fingers are counterbalanced by an increase in individual finger force variability in multifinger tasks as compared with single-finger tasks. The results speak in favor of a feed-forward model of multifinger synergies. They corroborate a hypothesis that multifinger synergies are created not to improve overall accuracy, but to allow the system larger flexibility, for example to deal with unexpected perturbations and concomitant tasks.
Resumo:
Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
Objective. - The objective of this work was to verify if there was a difference in throwing speed performance between heavier and lighter weight categories in judo. Methods and subjects. - Sixteen (16) judoists 18 +/- 3 years old, eight considered in the lightweight category (< 66 kg) and eight considered in the heavyweight (> 73 kg) category, participated in the study after signing a term of informed consent. A force-velocity test was used to determine the anaerobic power, strength, and pedal speed for each subject. In addition, three trials of Nage-komi exercise, each comprised of a set of Osoto-gari (15s), Uchi-mata (15s) and Seoi-nage (15s) throws were performed by each subject to ascertain throwing speed. Throws within the sets were intersected by one period of three minutes passive rest, while the trials were separated by one period of 10 minutes passive rest. Heart rate and the greatest number of throws within each set were measured for three trials. One-way analysis of variance (Anova) was used to compare the number of throws between the two weight categories and a ""Student"" test when the difference was significant. A correlation was used to examine the link between the different parameters. Results. - The force-velocity test did not show a significant difference in pedal speed between the two categories. However, there was a significant difference between the two categories when throwing speed was measured by the number of throws (p < 0.05) executed during the Seoi-nage (p < 0.01) and Uchi-mata (p <0.05) techniques. There was however, no significant difference between the two categories in Osoto-gari technique. Conclusion. - The throwing speed of judoists represented by the number of throws is significantly different between the two categories. The lighter category has more speed than the heavier category using the arm technique (Seoi-nage), while the heavier category has more speed using the leg technique with half turn of the attacker`s body (Uchi-mata). As a result, throwing speed is related to the type of technique used and not weight category. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
We examined effects of attentional focus on swimming speed. Participants` task was to swim one length of a pool (16 m) using the front crawl stroke. In Experiment 1, intermediate swimmers were given attentional focus instructions related to the crawl arm stroke or the leg kick, respectively. Participants were instructed to focus on ""pulling your hands back"" or ""pushing the instep down"" (internal focus), or on ""pushing the water back/down"" (external focus), respectively. Swim times were significantly shorter with an external focus. In Experiment 2, a control condition was included. Times were significantly faster in the external focus compared with both the internal focus and control conditions. These findings have implications for enhancing performance in swimming.
Resumo:
Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
This paper presents a robust voltage control scheme for fixed-speed wind generators using a static synchronous compensator (STATCOM) controller. To enable a linear and robust control framework with structured uncertainty, the overall system is represented by a linear part plus a nonlinear part that covers an operating range of interest required to ensure stability during severe low voltages. The proposed methodology is flexible and readily applicable to larger wind farms of different configurations. The performance of the control strategy is demonstrated on a two area test system. Large disturbance simulations demonstrate that the proposed controller enhances voltage stability as well as transient stability of induction generators during low voltage ride through (LVRT) transients and thus enhances the LVRT capability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
By the use of installed fibers inside the city we demonstrated a 48.8 km ultralong Erbium-doped fiber laser in modelocking regime with repetition rate varying from 1-10 GHz. The shortest pulse duration of 42 ps at 2.5 GHz was obtained by optimization of intracavity dispersion.