868 resultados para kernel estimators


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the fixed design regression model, additional weights areconsidered for the Nadaraya--Watson and Gasser--M\"uller kernel estimators.We study their asymptotic behavior and the relationships between new andclassical estimators. For a simple family of weights, and considering theIMSE as global loss criterion, we show some possible theoretical advantages.An empirical study illustrates the performance of the weighted estimatorsin finite samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero at some process. Kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression are commonly used. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. in this paper, we first show that this least squares bias induces a significant increase in the bias and mean-squared error of kernel-based estimators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we studied the asymptotic unbiasedness, the strong and the uniform strong consistencies of a class of kernel estimators fn as an estimator of the density function f taking values on a k-dimensional sphere

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evaluating the seismic hazard requires establishing a distribution of the seismic activity rate, irrespective of the methodology used in the evaluation. In practice, how that activity rate is established tends to be the main difference between the various evaluation methods. The traditional procedure relies on a seismogenic zonation and the Gutenberg-Richter (GR) hypothesis. Competing zonations are often compared looking only at the geometry of the zones, but the resulting activity rate is affected by both geometry and the values assigned to the GR parameters. Contour plots can be used for conducting more meaningful comparisons, providing the GR parameters are suitably normalised. More recent approaches for establishing the seismic activity rate forego the use of zones and GR statistics and special attention is paid here to such procedures. The paper presents comparisons between the local activity rates that result for the complete Iberian Peninsula using kernel estimators as well as two seismogenic zonations. It is concluded that the smooth variation of the seismic activity rate produced by zoneless methods is more realistic than the stepwise changes associated with zoned approaches; moreover, the choice of zonation often has a stronger influence on the results than its fairly subjective origin would warrant. It is also observed that the activity rate derived from the kernel approach, related with the GR parameter “a”, is qualitatively consistent with the epicentres in the catalogue. Finally, when comparing alternative zonations it is not just their geometry but the distribution of activity rate that should be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel densityestimation techniques in the context of compositional data analysis. Indeed, they gavetwo options for the choice of the kernel to be used in the kernel estimator. One ofthese kernels is based on the use the alr transformation on the simplex SD jointly withthe normal distribution on RD-1. However, these authors themselves recognized thatthis method has some deficiencies. A method for overcoming these dificulties based onrecent developments for compositional data analysis and multivariate kernel estimationtheory, combining the ilr transformation with the use of the normal density with a fullbandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu-Figueras (2006). Here we present an extensive simulation study that compares bothmethods in practice, thus exploring the finite-sample behaviour of both estimators

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Q tau estimator minimizes a tau scale of the differences between empirical and theoretical quantiles. It is n(1/2) consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is essentially twofold: first, to describe the use of spherical nonparametric estimators for determining statistical diagnostic fields from ensembles of feature tracks on a global domain, and second, to report the application of these techniques to data derived from a modern general circulation model. New spherical kernel functions are introduced that are more efficiently computed than the traditional exponential kernels. The data-driven techniques of cross-validation to determine the amount elf smoothing objectively, and adaptive smoothing to vary the smoothing locally, are also considered. Also introduced are techniques for combining seasonal statistical distributions to produce longer-term statistical distributions. Although all calculations are performed globally, only the results for the Northern Hemisphere winter (December, January, February) and Southern Hemisphere winter (June, July, August) cyclonic activity are presented, discussed, and compared with previous studies. Overall, results for the two hemispheric winters are in good agreement with previous studies, both for model-based studies and observational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a systematic and unified treatment of the developments in the area of kernel estimation in econometrics and statistics. Both the estimation and hypothesis testing issues are discussed for the nonparametric and semiparametric regression models. A discussion on the choice of windowwidth is also presented.