156 resultados para isomorphism
Resumo:
The test based on comparison of the characteristic coefficients of the adjancency matrices of the corresponding graphs for detection of isomorphism in kinematic chains has been shown to fail in the case of two pairs of ten-link, simple-jointed chains, one pair corresponding to single-freedom chains and the other pair corresponding to three-freedom chains. An assessment of the merits and demerits of available methods for detection of isomorphism in graphs and kinematic chains is presented, keeping in view the suitability of the methods for use in computerized structural synthesis of kinematic chains. A new test based on the characteristic coefficients of the “degree” matrix of the corresponding graph is proposed for detection of isomorphism in kinematic chains. The new test is found to be successful in the case of a number of examples of graphs where the test based on characteristic coefficients of adjancency matrix fails. It has also been found to be successful in distinguishing the structures of all known simple-jointed kinematic chains in the categories of (a) single-freedom chains with up to 10 links, (b) two-freedom chains with up to 9 links and (c) three-freedom chains with up to 10 links.
Resumo:
We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [Narayan Vikas, An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism, J. Comput. System Sci. 53 (1996) 1-9] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.
Resumo:
We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting.
Resumo:
Both ice and silica crystallize into solid-state structures composed of tetrahedral building units that are joined together to form an infinite four-connected net. Mathematical considerations suggest that there is a vast number of such nets and thus potential crystal structures. It is therefore perhaps surprising to discover that, despite the differences in the nature of interatomic interactions in these materials, a fair number of commonly observed ice and silica phases are based on common nets. Here we use computer simulation to investigate the origin of this symmetry between the structures formed for ice and silica and to attempt to understand why it is not complete. We start from a comparison of the dense phases and then move to the relationship between the different open (zeolitic and clathratic) structures formed for both materials. We show that there is a remarkably strong correlation between the energetics of isomorphic silica and water ice structures and that this correlation arises because of the strong link between the total energy of a material and its local geometric features. Finally, we discuss a number of as yet unsynthesized low-energy structures which include a phase of ice based on quartz, a silica based on the structure of ice VI, and an ice clathrate that is isomorphic to the silicate structure nonasil.
Resumo:
We give a necessary and sufficient condition for two ax+b-like groups to have isomorphic C*-algebras. In particular, we show that there are many non-isomorphic ax+b -like Lie groups having isomorphic group C*-algebras.
Resumo:
From a statistician's standpoint, the interesting kind of isomorphism for fractional factorial designs depends on the statistical application. Combinatorially isomorphic fractional factorial designs may have different statistical properties when factors are quantitative. This idea is illustrated by using Latin squares of order 3 to obtain fractions of the 3(3) factorial. design in 18 runs.
Resumo:
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2(m) circle plus [0, alpha], the topological sums of Cantor cubes 2(m), with m smaller than the first sequential cardinal, and intervals of ordinal numbers [0, alpha]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C(2(m) circle plus [0, alpha]) spaces with m >= N(0) and alpha >= omega(1) are the trivial ones. This result leads to some elementary questions on large cardinals.