997 resultados para intrinsically disordered sequences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrinsically disordered proteins, IDPs, are proteins that lack a rigid 3D structure under physiological conditions, at least in vitro. Despite the lack of structure, IDPs play important roles in biological processes and transition from disorder to order upon binding to their targets. With multiple conformational states and rapid conformational dynamics, they engage in myriad and often ``promiscuous'' interactions. These stochastic interactions between IDPs and their partners, defined here as conformational noise, is an inherent characteristic of IDP interactions. The collective effect of conformational noise is an ensemble of protein network configurations, from which the most suitable can be explored in response to perturbations, conferring protein networks with remarkable flexibility and resilience. Moreover, the ubiquitous presence of IDPs as transcriptional factors and, more generally, as hubs in protein networks, is indicative of their role in propagation of transcriptional (genetic) noise. As effectors of transcriptional and conformational noise, IDPs rewire protein networks and unmask latent interactions in response to perturbations. Thus, noise-driven activation of latent pathways could underlie state-switching events such as cellular transformation in cancer. To test this hypothesis, we created a model of a protein network with the topological characteristics of a cancer protein network and tested its response to a perturbation in presence of IDP hubs and conformational noise. Because numerous IDPs are found to be epigenetic modifiers and chromatin remodelers, we hypothesize that they could further channel noise into stable, heritable genotypic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n16 is a framework protein family associated with biogenic mineral stabilization, thought to operate at three key interfaces in nacre: protein/β-chitin, protein/protein, and protein/CaCO3. The N-terminal half of this protein, n16N, is known to be active in conferring this mineral stabilization and organization. While some details relating to the stabilization and organization of the mineral are known, the molecular mechanisms that underpin these processes are not yet established. To provide these molecular-scale details, here we explore current hypotheses regarding the possible subdomain organization of n16N, as related to these three interfaces in nacre, by combining outcomes of Replica Exchange with Solute Tempering molecular dynamics simulations with NMR experiments, to investigate the conformational ensemble of n16N in solution. We verify that n16N lacks a well-defined secondary structure, both with and without the presence of Ca(2+) ions, as identified from previous experiments. Our data support the presence of three different, functional subdomains within n16N. Our results reveal that tyrosine, chiefly located in the center of the peptide, plays a multifunctional role in stabilizing conformations of n16N, for intrapeptide and possibly interpeptide interactions. Complementary NMR spectroscopy data confirm the participation of tyrosine in this stabilization. The C-terminal half of n16N, lacking in tyrosine and highly charged, shows substantive conformational diversity and is proposed as a likely site for nucleation of calcium carbonate. Finally, dominant structures from our predicted conformational ensemble suggest the presentation of key residues thought to be critical to the selective binding to β-chitin surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermediate-resolution coarse-grained protein model PLUM [T. Bereau and M. Deserno, J. Chem. Phys., 2009, 130, 235106] is used to simulate small systems of intrinsically disordered proteins involved in biomineralisation. With minor adjustments to reduce bias toward stable secondary structure, the model generates conformational ensembles conforming to structural predictions from atomistic simulation. Without additional structural information as input, the model distinguishes regions of the chain by predicted degree of disorder, manifestation of structure, and involvement in chain dimerisation. The model is also able to distinguish dimerisation behaviour between one intrinsically disordered peptide and a closely related mutant. We contrast this against the poor ability of PLUM to model the S1 quartz-binding peptide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mitochondrial pathway of apoptosis is initiated by Bcl-2 homology region 3 (BH3)-only members of the Bcl-2 protein family. On upregulation or activation, certain BH3-only proteins can directly bind and activate Bak and Bax to induce conformation change, oligomerization and pore formation in mitochondria. BH3-only proteins, with the exception of Bid, are intrinsically disordered and therefore, functional studies often utilize peptides based on just their BH3 domains. However, these reagents do not possess the hydrophobic membrane targeting domains found on the native BH3-only molecule. To generate each BH3-only protein as a recombinant protein that could efficiently target mitochondria, we developed recombinant Bid chimeras in which the BH3 domain was replaced with that of other BH3-only proteins (Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk). The chimeras were stable following purification, and each immunoprecipitated with full-length Bcl-xL according to the specificity reported for the related BH3 peptide. When tested for activation of Bak and Bax in mitochondrial permeabilization assays, Bid chimeras were ~1000-fold more effective than the related BH3 peptides. BH3 sequences from Bid and Bim were the strongest activators, followed by Puma, Hrk, Bmf and Bik, while Bad and Noxa were not activators. Notably, chimeras and peptides showed no apparent preference for activating Bak or Bax. In addition, within the BH3 domain, the h0 position recently found to be important for Bax activation, was important also for Bak activation. Together, our data with full-length proteins indicate that most BH3-only proteins can directly activate both Bak and Bax.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potato virus A (PVA) genome linked protein (VPg) is a multifunctional protein that takes part in vital infection cycle events such as replication and movement of the virus from cell to cell. VPg is attached to the 5´ end of the genome and is carried in the tip structure of the filamentous virus particle. VPg is also the last protein to be cleaved from the polyprotein. VPg interacts with several viral and host proteins and is phosphorylated at several positions. These features indicate a central role in virus epidemiology and a requirement for an efficient but flexible mechanism for switching between different functions. -- This study examines some of the key VPg functions in more detail. Mutations in the positively charged region from Ala38 to Lys44 affected the NTP binding, uridylylation, and in vitro translation inhibition activities of VPg, whereas in vivo translation inhibition was not affected. Some of the data generated in this study implicated the structural flexibility of the protein in functional activities. VPg lacks a rigid structure, which could allow it to adapt conformationally to different functions as needed. A major finding of this study is that PVA VPg belongs to the class of ´intrinsically disordered proteins´ (IDPs). IDPs are a novel protein class that has helped to explain the observed lack of structure. The existence of IDPs clearly shows that proteins can be functional and adapt a native fold without a rigid structure. Evidence for the intrinsic disorder of VPg was provided by CD spectroscopy, NMR, fluorescence spectroscopy, bioinformatic analysis, and limited proteolytic digestion. The structure of VPg resembles that of a molten globule-type protein and has a hydrophobic core domain. Approximately 50% of the protein is disordered and an α-helical stabilization of these regions has been hypothesized. Surprisingly, VPg structure was stabilized in the presence of anionic lipid vesicles. The stabilization was accompanied by a change in VPg structure and major morphological modifications of the vesicles, including a pronounced increase in the size and appearance of pore or plaque like formations on the vesicle surface. The most likely scenario seems to be an α-helical stabilization of VPg which induces formation of a pore or channel-like structure on the vesicle surface. The size increase is probably due to fusion or swelling of the vesicles. The latter hypothesis is supported by the evident disruption of the vesicles after prolonged incubation with VPg. A model describing the results is presented and discussed in relation to other known properties of the protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a `society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TUFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.