841 resultados para internet of things
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Engenharia Informática, Área de Especialização em Arquiteturas, Sistemas e Redes
Resumo:
O foco principal no estudo da Internet of Things tem sido a integração de dispositivos digitais com o mundo físico e vice-versa. Os dispositivos inteligentes têm vindo a ganhar uma forte presença na nossa vida diária e cada vez mais, tendem a integrar o sistema de uma casa, automatizando processos comuns como o controlo de temperatura ambiente ou mesmo a percentagem de luminosidade de uma divisão. A visão da IoT contempla um mundo interconectado, recolhendo informações de forma automática e possibilitando a comunicação entre dispositivos. Contudo, as tecnologias existentes para a criação de redes que albergam estes novos dispositivos carecem de padrões bem definidos, dificultando a interoperabilidade entre as diversas soluções existentes. Neste projeto são estudadas e aplicadas as tecnologias mais promissoras aplicáveis ao paradigma Internet of Things, com o objetivo de encontrar um conjunto de protocolos padrão para a implementação de sistemas de automação em casas inteligentes.1 Como objetivo final deste projeto, pretende-se criar uma rede de dispositivos com capacidades sensoriais que tenham a capacidade de comunicar com o mundo externo, permitindo o acesso à rede por qualquer tipo de utilizador. Com isso, espera-se caminhar para mais perto da padronização dos protocolos inerentes à IoT e habilitar interoperabilidade entre as mais diversas soluções. São apresentados e utilizados os protocolos que mais se adaptam ao tema escolhido, tentando simplificar a rede para que esta possa ser incluída em qualquer ambiente doméstico, recorrendo a hardware de custo reduzido. Os protocolos apresentados são o 6LoWPAN, utilizando o protocolo IEEE 802.15.4 como interface de rede juntamente com endereçamento IPv6. É também utilizado o protocolo CoAP na troca de mensagens entre os dispositivos.
Resumo:
The 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
The Internet of Things (IoT) is a concept that can foster the emergence of innovative applications. In order to minimize parents’s concerns about their children’s safety, this paper presents the design of a smart Internet of Things system for identifying dangerous situations. The system will be based on real time collection and analysis of physiological signals monitored by non-invasive and non-intrusive sensors, Frequency IDentification (RFID) tags and a Global Positioning System (GPS) to determine when a child is in danger. The assumption of a state of danger is made taking into account the validation of a certain number of biometric reactions to some specific situations and according to a self-learning algorithm developed for this architecture. The results of the analysis of data collected and the location of the child will be able in real time to child’s care holders in a web application.
Resumo:
Internet of Things (IoT) technologies are developing rapidly, and therefore there exist several standards of interconnection protocols and platforms. The existence of heterogeneous protocols and platforms has become a critical challenge for IoT system developers. To mitigate this challenge, few alliances and organizations have taken the initiative to build a framework that helps to integrate application silos. Some of these frameworks focus only on a specific domain like home automation. However, the resource constraints in the large proportion of connected devices make it difficult to build an interoperable system using such frameworks. Therefore, a general purpose, lightweight interoperability framework that can be used for a range of devices is required. To tackle the heterogeneous nature, this work introduces an embedded, distributed and lightweight service bus, Lightweight IoT Service bus Architecture (LISA), which fits inside the network stack of a small real-time operating system for constrained nodes. LISA provides a uniform application programming interface for an IoT system on a range of devices with variable resource constraints. It hides platform and protocol variations underneath it, thus facilitating interoperability in IoT implementations. LISA is inspired by the Network on Terminal Architecture, a service centric open architecture by Nokia Research Center. Unlike many other interoperability frameworks, LISA is designed specifically for resource constrained nodes and it provides essential features of a service bus for easy service oriented architecture implementation. The presented architecture utilizes an intermediate computing layer, a Fog layer, between the small nodes and the cloud, thereby facilitating the federation of constrained nodes into subnetworks. As a result of a modular and distributed design, the part of LISA running in the Fog layer handles the heavy lifting to assist the lightweight portion of LISA inside the resource constrained nodes. Furthermore, LISA introduces a new networking paradigm, Node Centric Networking, to route messages across protocol boundaries to facilitate interoperability. This thesis presents a concept implementation of the architecture and creates a foundation for future extension towards a comprehensive interoperability framework for IoT.
Resumo:
IBM provide a comprehensive academic initiative, (http://www-304.ibm.com/ibm/university/academic/pub/page/academic_initiative) to universities, providing them free of charge access to a wide range of IBM Software. As part of this initiative we are currently offering free IBM Bluemix accounts, either to be used within a course, or for students to use for personal skills development. IBM Bluemix provides a comprehensive cloud based platform as a service solution set which includes the ability to quickly and easily integrate data from devices from Internet of Things ( IoT) solutions to develop and run productive and user focused web and mobile applications. If you would be interested in hearing more about IBM and Internet of Things or you would like to discuss prospective research projects that you feel would operate well in this environment, please come along to the seminar!
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
The Internet of Things is a new paradigm where smart embedded devices and systems are connected to the Internet. In this context, Wireless Sensor Networks (WSN) are becoming an important alternative for sensing and actuating critical applications like industrial automation, remote patient monitoring and domotics. The IEEE 802.15.4 protocol has been adopted as a standard for WSN and the 6LoWPAN protocol has been proposed to overcome the challenges of integrating WSN and Internet protocols. In this paper, the mechanisms of header compression and fragmentation of IPv6 datagrams proposed in the 6LoWPAN standard were evaluated through field experiments using a gateway prototype and IEEE 802.15.4 nodes.
Resumo:
The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.