962 resultados para hyperbolic coordinates
Resumo:
A lubrication-flow model for a free film in a corner is presented. The model, written in the hyperbolic coordinate system ξ = x² – y², η = 2xy, applies to films that are thin in the η direction. The lubrication approximation yields two coupled evolution equations for the film thickness and the velocity field which, to lowest order, describes plug flow in the hyperbolic coordinates. A free film in a corner evolving under surface tension and gravity is investigated. The rate of thinning of a free film is compared to that of a film evolving over a solid substrate. Viscous shear and normal stresses are both captured in the model and are computed for the entire flow domain. It is shown that normal stress dominates over shear stress in the far field, while shear stress dominates close to the corner.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained from ground-state density functionals. As a viability test, the method is applied to ground-state energies and various types of excited-state energies of atoms and ions from the He and the Li isoelectronic series. Results are compared to a variety of alternative DFT-based approaches to excited states, in particular time-dependent density-functional theory with exact and approximate potentials.
Resumo:
The interference in a phase space algorithm of Schleich and Wheeler [Nature 326, 574 (1987)] is extended to the hyperbolic space underlying the group SU(1,1). The extension involves introducing the notion of weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the generators of su(1,1) thus obtained are found to be in excellent agreement with the numerical results.[S1050-2947(98)08602-8].
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
In this paper we determine bounds for the optimal loss of regularity in the Sobolev scale for a class of weakly hyperbolic operators. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
In this work we solve Mathematical Programs with Complementarity Constraints using the hyperbolic smoothing strategy. Under this approach, the complementarity condition is relaxed through the use of the hyperbolic smoothing function, involving a positive parameter that can be decreased to zero. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
This chapter described the global and local coordinate systems utilized in the formulation of spatial multibody systems. Global coordinate system is considered in the present work to denote the inertia frame. Additionally, body-fixed coordinate systems, also called local coordinate systems, are utilized to describe local properties of points that belong to a particular body. Furthermore, the process of transforming local coordinates into global coordinates is characterized by considering a transformation matrix. In the present work, Cartesian coordinates are utilized to locate the center of mass of each rigid body, as well as the location of any point that belongs to a body.
Resumo:
This chapter describes the how the vector of coordinates are defined in the formulation of spatial multibody systems. For this purpose, the translational motion is described in terms of Cartesian coordinates, while rotational motion is specified using the technique of Euler parameters. This approach avoids the computational difficulties associated with the singularities in the case of using Euler angles or Bryant angles. Moreover, the formulation of the velocities vector and accelerations vector is presented and analyzed here. These two sets of vectors are defined in terms of translational and rotational coordinates.
Resumo:
Genuinely multidimensional schemes, hyperbolic systems, wave equations, Euler equations, evolution Galerkin schemes, space-time conservative methods, high order accuracy, shock solutions
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2013