969 resultados para high tolerance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

.In this letter, we demonstrate for the first time that gate misalignment is not a critical limiting factor for low voltage operation in gate-underlap double gate (DG) devices. Our results show that underlap architecture significantly extends the tolerable limit of gate misalignment in 25 nm devices. DG MOSFETs with high degree of gate misalignment and optimal gate-underlap design can perform comparably or even better than self-aligned nonunderlap devices. Results show that spacer-to-straggle (s/sigma) ratio, a key design parameter for underlap devices, should be within the range of 2.3-3.0 to accommodate back gate misalignment. These results are very significant as the stringent process control requirements for achieving self-alignment in nanoscale planar DG MOSFETs are considerably relaxed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30°C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H2O2 compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2-(9-Carbazole)-ethyl-chloroformate (CEOC), a novel pre-column fluorescence derivatization reagent, has been developed for the analysis of aromatic amines. Taking five monocyclic aromatic amines (o-toluidine, aniline, 3,4-dimethylaniline, N-ethyl-p-toluidine, and p-phenylenediamine) as testing compounds, derivatization conditions such as pH of borate buffer, reaction time and fluorescent tagging reagent concentration have been investigated. By a one-step procedure, CEOC reacts readily with the aromatic amines to form stable derivatives with excitation and emission wavelengths, respectively, at 293 and 360 nm. This derivatization reaction could be finished within 20 min even at room temperature. The peak shapes of the derivatized aromatic amines can be improved greatly without any addition of competition amines into the mobile phase. Furthermore, this method can offer excellent quantitative precision with high tolerance of the matrix of samples. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lumbricus rubellus Hoffmeister, inhabiting soil at the 19th century Devon Great Consols mine at Tavistock, Devon, UK, show high tolerance to Cu- and As-toxicity and frequently have a striking yellow coloration. Specimens from this site (mature and immature) and from an uncontaminated site on Lancaster University campus (mature) were photographed, and the slide images digitized and analyzed. All L. rubellus showed reddish-purple pigmentation of the body wall that declined in intensity posteriorly. The metal- and metalloid-resistant earthworms, whether mature or immature, showed yellowing in the posterior half of the body. The source of the coloration was intense yellow pigmentation of the chloragogenous tissue surrounding the alimentary canal. The yellow pigmentation is masked by reddish-purple body wall pigmentation anteriorly. Total As concentrations in tissues were determined for the anterior, middle and posterior sections of resistant and non-resistant L. rubellus. Highest concentrations were in the middle sections of the mature and immature resistant L. rubellus (36.17 ± 19.77 and 27.77 ± 9.02 mg As kg-1, respectively). Resistant immature L. rubellus lost condition over 28 d in soil treated with 750 mg As kg-1, possibly due to a higher metabolism, whilst there was no loss in condition for resistant mature L. rubellus in the treated soil. As far as the authors are aware, this is the first report of yellow pigmentation of this kind in earthworms. The pigmentation may provide a useful indicator of exposure/resistance to soil contamination. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dome-shaped Fresnel-Köhler concentrator is a novel optical design for photovoltaic applications. It is based on two previous successful CPV optical designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. This optical concentrator will be able to achieve large concentration factors, high tolerance (i.e. acceptance angle) and high optical efficiency, three key issues when dealing with photovoltaic applications. Besides, its irradiance is distributed on the cell surface in a very even way. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, on-axis optical efficiency over 85% and good irradiance uniformity on the cell provided by Köhler integration. Furthermore, due to its high tolerance, we will present the dome-shaped Fresnel-Köhler concentrator as a cost-effective CPV optical design. All this makes this concentrator superior to other conventional competitors in the current market.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Results: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/ transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. Conclusions: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that herbivorous insects respond to changes in plant odour production, but little attention has been given to whether these responses relate to direct fitness costs of plant volatile production on insect growth and survival. Here, we use transgenic Nicotiana tabacum (tobacco) plants that produce relatively large amounts of the volatile (S)-linalool to study whether the responses of egg-laying herbivorous insects to linalool production relate directly to the growth and survival of offspring. In choice tests, fewer eggs were laid on transgenic plants compared with non-transformed controls, indicating that increased linalool emissions have a deterrent effect on Helicoverpa armigera oviposition. Larval survival and larval mass after feeding on transgenic leaves, however, was comparable to non-transformed controls. (S)-linalool, whether in volatile or sequestered form, does not appear to have a direct effect on offspring fitness in this moth. We discuss how the ecology of this polyphagous moth species may necessitate a high tolerance for certain volatiles and their related non-volatile compounds, and suggest that responses by adult female H. armigera moths towards increased linalool production may be context specific and relate to other indirect effects on fitness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Delay and disruption tolerant networks (DTNs) are computer networks where round trip delays and error rates are high and disconnections frequent. Examples of these extreme networks are space communications, sensor networks, connecting rural villages to the Internet and even interconnecting commodity portable wireless devices and mobile phones. Basic elements of delay tolerant networks are a store-and-forward message transfer resembling traditional mail delivery, an opportunistic and intermittent routing, and an extensible cross-region resource naming service. Individual nodes of the network take an active part in routing the traffic and provide in-network data storage for application data that flows through the network. Application architecture for delay tolerant networks differs also from those used in traditional networks. It has become feasible to design applications that are network-aware and opportunistic, taking an advantage of different network connection speeds and capabilities. This might change some of the basic paradigms of network application design. DTN protocols will also support in designing applications which depend on processes to be persistent over reboots and power failures. DTN protocols could also be applicable to traditional networks in cases where high tolerance to delays or errors would be desired. It is apparent that challenged networks also challenge the traditional strictly layered model of network application design. This thesis provides an extensive introduction to delay tolerant networking concepts and applications. Most attention is given to challenging problems of routing and application architecture. Finally, future prospects of DTN applications and implementations are envisioned through recent research results and an interview with an active researcher of DTN networks.