971 resultados para gallic acid alkyl ester


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a seriousdisease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread ofX. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). Thetreatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a commontarget involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. © 2013, American Society for Microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic n-alkyl esters of gallic acid (GA), also known as gallates, especially propyl, octyl and dodecyl gallates, are widely employed as antioxidants by food and pharmaceutical industries. The inhibitory effects of GA and 15 gallates on Herpes Simplex Virus type 1 (HSV-1) and Human Immunodeficiency Virus (HIV-1) replication were investigated here. After a preliminary screening of these compounds, GA and pentyl gallate (PG) seemed to be the most active compounds against HSV-1 replication and their mode of action was characterized through a set of assays, which attempted to localize the step of the viral multiplication cycle where impairment occurred. The detected anti-HSV-1 activity was mediated by the inhibition of virus attachment to and penetration into cells, and by virucidal properties. Furthermore, an anti-HIV-1 activity was also found, to different degrees. In summary, our results suggest that both compounds could be regarded as promising candidates for the development of topical anti-HSV-1 agents, and further studies concerning the anti-HIV-1 activity of this group of molecules are merited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering encapsulated cells such as chondrocytes in the carrier matrix have been widely used to repair cartilage defects. However, chondrocyte phenotype is easily lost when chondrocytes are expanded in vitro by a process defined as “dedifferentiation”. To ensure successful therapy, an effective pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers in the restoration process, and dedifferentiation is a prerequisite. Gallic acid (GA) has been used in the treatment of arthritis, but its biocompatibility is inferior to that of other compounds. In this study, we modified GA by incorporating sulfamonomethoxine sodium and synthesized a sulfonamido-based gallate, JJYMD-C, and evaluated its effect on chondrocyte metabolism. Our results showed that JJYMD-C could effectively increase the levels of the collagen II, Sox9, and aggrecan genes, promote chondrocyte growth, and enhance secretion and synthesis of cartilage extracellular matrix. On the other hand, expression of the collagen I gene was effectively down-regulated, demonstrating inhibition of chondrocyte dedifferentiation by JJYMD-C. Hypertrophy, as a characteristic of chondrocyte ossification, was undetectable in the JJYMD-C groups. We used JJYMD-C at doses of 0.125, 0.25, and 0.5 µg/mL, and the strongest response was observed with 0.25 µg/mL. This study provides a basis for further studies on a novel agent in the treatment of articular cartilage defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box–Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the potential application of colloidal gas aphrons (CGA) to the recovery of antioxidants from wine-making waste extracts is investigated. CGA were generated by stirring a buffered solution (400 ml) of a cationic surfactant(cetyltrimethylammonium bromide, CTAB) at 8000 rpm for 10 minutes. Trials were carried out on standard solutions (2 ml) of gallic acid (GA) 200 mg/l with varying volumes of colloidal gas aphrons (20-60 ml) generated with varying concentrations of CTAB (2 and 4 mM). Influence of pH, solvent (buffered aqueous solution and ethanol), CTAB to GA molar ratio on recovery were studied. Best recovery (63%) was achieved from an aqueous solution of GA and at a CTAB to GA molar ratio of 16. Separation is mainly driven by electrostatic interactions but pH conditions are to be optimised to preserve the GA antioxidant power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous study we have demonstrated that gallic acid (GA) in its anionic form can be recovered from aqueous solutions using colloidal gas aphrons (CGA) generated from the cationic surfactant cetyltrimethylammonium bromide (CTAB). The aim of the present work is to get a better understanding of the separation mechanism in order to determine the optimum operating conditions to maximise the recovery of GA while preserving its antioxidant properties. Zeta potential measurements were carried out to characterise the surface charge of GA, CTAB and their mixtures at three different pH conditions (both in buffers and in aqueous solutions). GA interacted strongly with CTAB at pH higher than its pKa 3.14 where it is ionised and negatively charged. However, at pH higher than 7 GA becomes oxidised and loses its antioxidant power. GA recovery was mainly affected by pH, ionic strength, surfactant/GA molar ratio, mixing conditions and contact time. Scale-up of the separation using a flotation column resulted in both higher recovery and reproducibility. Preliminary experiments with grape marc extracts confirmed the potential application of this separation for the recovery of polyphenols from complex feedstocks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on proapoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)