1000 resultados para equazione ipergeometrica equazione di Legendre funzioni speciali


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene presentato uno studio dell'equazione ipergeometrica, dell'equazione di Legendre e delle proprietà delle loro soluzioni. Infine vengono presentate alcune tra le possibili applicazioni di tali equazioni. 

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella presente tesi ci siamo occupati dell'equazione di curvatura di Gauss-Levi, prima introducendo le nozioni necessarie alla sua definizione, poi cercandone soluzioni viscose. A tale scopo abbiamo introdotto in generale la nozione di soluzione viscosa per operatori ellittici degeneri, dimostrandone l'esistenza grazie al Principio del Confronto e al Metodo di Perron. Abbiamo infine riportato alcuni risultati che collegano le soluzioni viscose dell'equazione di curvatura, a quelle classiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro viene presentato un modello matematico per l'aggregazione e la diffusione della beta-amiloide nel cervello umano affetto dalla malattia di Alzheimer, con la particolarità di considerare coefficienti di diffusione variabili e non costanti. Il modello è basato sull'equazione di Smoluchowski discreta per l'aggregazione, modificata in modo opportuno per considerare anche il fenomeno di diffusione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nello studio di sistemi dinamici si cerca una trasformazione nello spazio delle fasi, detta trasformazione canonica, che lasci invariato il sistema di Hamilton e che porti a una funzione hamiltoniana che non dipenda più dai parametri lagrangiani, ma solo dai momenti. Si arriva quindi all'equazione di Hamilton-Jacobi che è una particolare equazione differenziale alle derivate parziali con incognita una funzione phi a valori scalari. Nei casi in cui ci siano n parametri lagrangiani si definisce il concetto di varietà lagrangiana come una varietà su cui si annulla la forma simplettica canonica e sotto l'ipotesi che esista una proiezione su R^n i punti di questa varietà si scrivono come (x,grad(phi(x)) e soddisfano l'equazione di Hamilton-Jacobi. Infine si illustra come una funzione phi trovata in questo modo permetta di approssimare l'equazione di Schroedinger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si sono analizzate le principali conseguenze dovute alle deformazioni nel reticolo cristallino del grafene. Si è fatta innanzitutto, una descrizione generale della struttura cristallina, seguita dal caso specifico del reticolo esagonale del grafene. Si è poi, passati alla struttura elettronica studiata in approssimazione di legame forte tramite il formalismo della seconda quantizzazione, arrivando a descrivere la particolare struttura a bande coniche del grafene, dove i portatori di carica, detti quasiparticelle, sono ben descritti dall'equazione di Dirac. Si sono, in seguito, introdotte le deformazioni del reticolo e i metodi per ottenerle, arrivando ad ampliare l'equazione di Dirac, inserendo in essa gli effetti dei potenziali, pseudo-vettore e scalare, indotti dalla deformazione. Questi potenziali indotti portano con loro alcune conseguenze, si sono analizzate in particolare quelle sulla distribuzione di carica, con particolare attenzione agli effetti di confinamento, e quelle sul trasporto di carica, in particolare riguardanti il filtraggio di valle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa tesi è dimostrare il Principio Forte di Continuazione Unica per opportune soluzioni di un'equazione di tipo Schrödinger Du=Vu, ove D è il sub-Laplaciano canonico di un gruppo di tipo H e V è un potenziale opportuno. Nel primo capitolo abbiamo esposto risultati già noti in letteratura sui gruppi di tipo H: partendo dalla definizione di tali gruppi, abbiamo fornito un'utile caratterizzazione in termini "elementari" che permette di esplicitare la soluzione fondamentale dei relativi sub-Laplaciani canonici. Nel secondo capitolo abbiamo mostrato una formula di rappresentazione per funzioni lisce sui gruppi di tipo H, abbiamo dimostrato una forma forte del Principio di Indeterminazione di Heisenberg (sempre nel caso di gruppi di tipo H) e abbiamo fornito una formula per la variazione prima dell'integrale di Dirichlet associato a Du=Vu. Nel terzo capitolo, infine, abbiamo analizzato le proprietà di crescita di funzioni di frequenza, utili a dimostrare le stime integrali che implicano in modo piuttosto immediato il Principio Forte di Continuazione Unica, principale oggetto del nostro studio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato si illustra una delle principali proprietà godute dalle funzioni armoniche: la disuguaglianza di Harnack, dal nome del matematico che la dimostrò nel 1887. Nella sua formulazione più semplice, essa afferma che se una funzione armonica è non negativa, allora l'estremo superiore di tale funzione su una palla euclidea è controllato dall'alto dall'estremo inferiore della funzione sulla stessa palla, a meno di una costante moltiplicativa dipendente solo dalla dimensione. Una simile disuguaglianza è soddisfatta anche da soluzioni di equazioni alle derivate parziali più generali dell'equazione di Laplace. Ad esempio, J. Moser nel 1961 dimostra che le soluzioni deboli di equazioni differenziali ellittiche lineari soddisfano una disuguaglianza di tipo Harnack. Tale risultato è argomento dell'ultimo capitolo di questo elaborato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi vengono presentate alcune relazioni fra gruppi quantici e modelli reticolari. In particolare si associa un modello vertex a una rappresentazione di un'algebra inviluppante quantizzata affine e si mostra che, specializzando il parametro quantistico ad una radice dell'unità, si manifestano speciali simmetrie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.