971 resultados para environmental modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As environmental problems became more complex, policy and regulatory decisions become far more difficult to make. The use of science has become an important practice in the decision making process of many federal agencies. Many different types of scientific information are used to make decisions within the EPA, with computer models becoming especially important. Environmental models are used throughout the EPA in a variety of contexts and their predictive capacity has become highly valued in decision making. The main focus of this research is to examine the EPA’s Council for Regulatory Modeling (CREM) as a case study in addressing science issues, particularly models, in government agencies. Specifically, the goal was to answer the following questions: What is the history of the CREM and how can this information shed light on the process of science policy implementation? What were the goals of implementing the CREM? Were these goals reached and how have they changed? What have been the impediments that the CREM has faced and why did these impediments occur? The three main sources of information for this research came from observations during summer employment with the CREM, document review and supplemental interviews with CREM participants and other members of the modeling community. Examining a history of modeling at the EPA, as well as a history of the CREM, provides insight into the many challenges that are faced when implementing science policy and science policy programs. After examining the many impediments that the CREM has faced in implementing modeling policies, it was clear that the impediments fall into two separate categories, classic and paradoxical. The classic impediments include the more standard impediments to science policy implementation that might be found in any regulatory environment, such as lack of resources and changes in administration. Paradoxical impediments are cyclical in nature, with no clear solution, such as balancing top-down versus bottom-up initiatives and coping with differing perceptions. These impediments, when not properly addressed, severely hinder the ability for organizations to successfully implement science policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the identification of two cryptic Iberian amphibians, Discoglossus galganoi Capula, Nascetti, Lanza, Bullini and Crespo, 1985 and Discoglossus jeanneae Busack, 1986, relies on molecular characterization. To provide a means to discern the distributions of these species, we used 385-base-pair sequences of the cytochrome b gene to identify 54 Spanish populations of Discoglossus. These data and a series of environmental variables were used to build up a logistic regression model capable of probabilistically designating a specimen of Discoglossus found in any Universal Transverse Mercator (UTM) grid cell of 10 km × 10 km to one of the two species. Western longitudes, wide river basins, and semipermeable (mainly siliceous) and sandstone substrates favored the presence of D. galganoi, while eastern longitudes, mountainous areas, severe floodings, and impermeable (mainly clay) or basic (limestone and gypsum) substrates favored D. jeanneae. Fifteen percent of the UTM cells were predicted to be shared by both species, whereas 51% were clearly in favor of D. galganoi and 34% were in favor of D. jeanneae, considering odds of 4:1. These results suggest that these two species have parapatric distributions and allow for preliminary identification of potential secondary contact areas. The method applied here can be generalized and used for other geographic problems posed by cryptic species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Most games use agents that have a basic awareness of the player and other agents, but are still unaware of important game events or environmental conditions. This article describes an agent design that combines cellular automata for environmental modeling with influence maps for agent decision-making. The result is simple, flexible game agents that are able to respond to dynamic changes to the environment (e.g., rain or fire) while pursuing a goal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Running hydrodynamic models interactively allows both visual exploration and change of model state during simulation. One of the main characteristics of an interactive model is that it should provide immediate feedback to the user, for example respond to changes in model state or view settings. For this reason, such features are usually only available for models with a relatively small number of computational cells, which are used mainly for demonstration and educational purposes. It would be useful if interactive modeling would also work for models typically used in consultancy projects involving large scale simulations. This results in a number of technical challenges related to the combination of the model itself and the visualisation tools (scalability, implementation of an appropriate API for control and access to the internal state). While model parallelisation is increasingly addressed by the environmental modeling community, little effort has been spent on developing a high-performance interactive environment. What can we learn from other high-end visualisation domains such as 3D animation, gaming, virtual globes (Autodesk 3ds Max, Second Life, Google Earth) that also focus on efficient interaction with 3D environments? In these domains high efficiency is usually achieved by the use of computer graphics algorithms such as surface simplification depending on current view, distance to objects, and efficient caching of the aggregated representation of object meshes. We investigate how these algorithms can be re-used in the context of interactive hydrodynamic modeling without significant changes to the model code and allowing model operation on both multi-core CPU personal computers and high-performance computer clusters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree-grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation. © 2007 Springer Science+Business Media B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os gestores de recursos hídricos estão encarregados da gestão de longo prazo, a regulação e a proteção dos recursos hídricos. No entanto, reconhece-se que a estes gestores devem levar em conta a multiplicidade de usos dos recursos hídricos que são apresentadas pelas partes interessadas, tais como agricultores, fornecedores de água e grupos de ambientalistas. Dada a complexidade do sistema hidrológico, o desenvolvimento e a utilização de modelos matemáticos são muitas das vezes necessários. Neste contexto a modelagem ambiental é frequentemente realizada para avaliar os impactos da degradação do ecossistema devido à ação humana. Essa aplicação orientada a investigações proporciona um importante meio pelo qual os cientistas podem interagir e influenciar nas políticas a nível local, regional, nacional e internacional. No Mato Grosso, durante a implantação da hidroelétrica de Aproveitamento Múltiplo de Manso foram adotadas medidas de mitigação dos impactos socioeconômicos causados. Essas medidas geram uma tendência de aumento populacional associado a uma mudança das características sócio-econômicas, para toda a região do entorno do Reservatório, o que agrava o problema de poluição por nutrientes e denota que existe uma necessidade proeminente de estudos do impacto que estas cargas causariam no ecossistema do reservatório. Utilizando o modelo hidrodinâmico e termodinâmico tridimensional ELCOM, associado ao modelo biogeoquímico Caedym, este trabalho tem a finalidade de criar uma modelagem representativa das cargas dos principais nutrientes causadores da eutrofização cultural, sendo eles: a amônia (NH4), o nitrato (NO3) e o Ortofosfato (PO4), com a finalidade de estudar os efeitos das dinâmicas espaciais e temporais destas cargas no estado trófico deste reservatório no em torno dos pontos de lançamento de esgoto e na sua totalidade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No Brasil, entre as áreas protegidas e regulamentadas por lei estão às denominadas Unidades de Conservação (UC) e são definidas assim por possuírem características ambientais, estéticas, históricas ou culturais relevantes, importantes na manutenção dos ciclos naturais, demandando regimes especiais de preservação, conservação ou exploração racional dos seus recursos. O Parque Estadual da Serra da Tiririca (PESET), criado pela Lei 1.901, de 29 de novembro de 1991 localizado entre os municípios de Niterói e Maricá no Estado do Rio de Janeiro, enquadra-se na categoria de UC de Proteção Integral abrigando uma extensa faixa de Mata Atlântica em seus limites. Para a presente pesquisa foi feita uma classificação de Uso da terra e cobertura vegetal, refinada por pesquisas feitas através do trabalho de campo, que subsidiou a elaboração da proposta de Zoneamento Ambiental para o parque. O processamento digital da imagem foi feito utilizando-se o sistema SPRING desenvolvido pelo Instituto de Pesquisas Espaciais (INPE). A confecção dos mapas temáticos foi feita com apoio do sistema Arcgis desenvolvido pela ESRI. O Sistema de Informação Geográfica (SIG) foi empregado para as modelagens ambientais. Nessa etapa foram consideradas, de forma integrada, a variabilidade taxonômica, a expressão territorial e as alterações temporais verificáveis em uma base de dados georreferenciada. A tecnologia SIG integra operações convencionais de bases de dados, relativas ao armazenamento, manipulação, análise, consulta e apresentação de dados, com possibilidades de seleção e busca de informações e suporte à análise geoestatística, conjuntamente com a possibilidade de visualização de mapas sofisticados e de análise espacial proporcionada pelos mapas. A opção por esta tecnologia busca potencializar a eficiência operacional e permitir planejamento estratégico e administração de problemas, tanto minimizando os custos operacionais como acelerando processos decisórios. O estudo feito através da modelagem computacional do PESET apresentará o emprego das técnicas amplamente utilizadas no monitoramento ambiental, sendo úteis aos profissionais destinados à gestão e aos tomadores de decisão no âmbito das políticas públicas relacionadas à gestão ambiental de Unidades de Conservação.