932 resultados para energy and protein restriction
Resumo:
One hundred sixty-two commercial 70-wk-old ISA Brown laying hens, previously subjected to induced molting by feed restriction, were distributed in a completely randomized design with 3 x 3 factorial arrangement (i.e., 3 metabolizable energy levels: 2,850; 2,950, and 3,050 kcal of ME/kg) and 3 protein levels (16, 18, and 20% CP), which totaled 9 treatments with 3 replicates of 6 birds each. Experimental diets were offered to birds after the feed restriction period. Performance and egg quality parameters were evaluated in 14-d intervals from the 4th to 12th weeks after forced molting for a total of 4 evaluation periods. Increases in dietary energy and protein levels did not improve performance or egg quality. The levels of 2,850 kcal of ME and 16% protein were sufficient for laying hens starting the second production cycle without decreasing their performance or egg quality.
Resumo:
Peer reviewed
Resumo:
During the last decade, the development of "bedside" investigative methods, including indirect calorimetry, nutritional balance and stable isotope techniques, have given a new insight into energy and protein metabolism in the neonates. Neonates and premature infants especially, create an unusual opportunity to study the metabolic adaptation to extrauterine life because their physical environment can be controlled, their energy intake and energy expenditure can be measured and the link between their protein metabolism and the energetics of their postnatal growth can be assessed with accuracy. Thus, relatively abstract physiological concepts such as the postnatal timecourse of heat production, energy cost of growth, energy cost of physical activity, thermogenic effect of feeding, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified. These results show that energy expenditure and heat production rates increase postnatally from average values of 40 kcal/kgxday during the first week to 60 kcal/kgxday in the third week. This increase parellels nutritional intakes as well as the rate of weight gain. The thermogenic effect of feeding and the physical activity are relatively low and account only for an average of 5% each of the total heat production. The cost of protein turnover is the highest energy demanding process. The fact that nitrogen balance becomes positive within 72 hours after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism: dry body mass and fat decrease while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches the statural growth. The goals of the following review are to summarize recent data on the physiological aspects of energy and protein metabolism directly related to the extrauterine adaptation, to describe experimental approaches which recently were adapted to the newborns in order to get "bedside results" and to discuss how far these results can help everyday's neonatal practice.
Resumo:
Two experiments were undertaken in which grass silage was used in conjunction with a series of different concentrate types designed to examine the effect of carbohydrate source, protein level and degradability on total dietary phosphorus (P) utilization with emphasis on P pollution. Twelve Holstein-Friesian dairy cows in early to mid-lactation were used in an incomplete changeover design with four periods consisting of 4 weeks each. Phosphorus intake ranged from 54 to 80 g/day and faecal P represented the principal route by which ingested P was disposed of by cows, with insignificant amounts being voided in urine. A positive linear relationship between faecal P and P intake was established. In Experiment 1, P utilization was affected by dietary carbohydrate type, with an associated output of 3.3 g faecal P/g milk P produced for all treatments except those utilizing low degradable starch and low protein supplements, where a mean value of 2.8 g faecal P/g milk P was observed. In Experiment 2, where two protein levels and three protein degradabilities were examined, the efficiency of P utilization for milk P production was not affected by either level or degradability of crude protein (CP) but a significant reduction in faecal P excretion due to lower protein and P intake was observed. In general, P utilization in Experiment 2 was substantially improved compared to the Experiment 1, with an associated output of 1.8 g faecal P/g milk P produced. The improved utilization of P in Experiment 2 could be due to lower P content of the diets offered and higher dry matter (DM) intake. For dairy cows weighing 600 kg, consuming 17-18 kg DM/day and producing about 25 kg milk, P excretion in faeces and hence P pollution to the environment might be minimized without compromising lactational performance by formulating diets to supply about 68 g P/day, which is close to recent published recommended requirements for P.
Resumo:
The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.
Resumo:
This study was designed to evaluate the effect of nutritional supplementation offered during the pre- and postpartum periods on serum cholesterol, triglycerides and total lipids of Canchim beef cows and their relationship with folliculogenesis. Thirty cows with predicted calving date between September and October, kept in pastures of Brachiaria brizantha cv. Marandu together with their calves, were randomly distributed into three experimental groups: the first received only a mineral mixture (Control Group, CG); the second group received a concentrate with 16% crude protein/kg dry matter (DM) and 3000 kcal digestible energy/kg DM offered for 45 days prepartum and 120 days postpartum (PREG); the third group received the concentrate from parturition until the 120th day postpartum (POSG). Consumption was estimated at 1% of body weight, and each cow received approximately 4.0 kg/day (fresh weight) of supplement. Blood samples were taken and an ultrasound examination of the ovaries was performed twice a week until the 60th day postpartum. The body condition score (BCS) and the weight of the cows were recorded at 15-day intervals from calving until the 60th day postpartum. Data are presented as mean +/- SEM. Mean weight and BCS at calving were, respectively, 448 +/- 54.9 kg and 6.2 +/- 0.25 (PREG); 432 +/- 71.1 kg and 5.5 +/- 0.69 (POSG); and 434 +/- 66.4 kg and 5.5 +/- 0.69 (CG). Total cholesterol (TC), triglycerides (TRIG) and total lipids (TLIP) were measured using colorimetry until the 60th day postpartum. TC averages were PREG 186 +/- 62.6 mg/dL, POSG 159 +/- 43.1 mg/dL and CG 133 +/- 35.1 mg/dL (P < 0.05). For TRIG, the means were PREG 29 +/- 11.3 mg/dL (P < 0.05), POSG 24 +/- 8.1 mg/dL and CG 26 +/- 12.1 mg/dL (P > 0.05). Serum concentrations of TLIP were PREG 588 +/- 145.6 mg/dL, POSG 512 +/- 137.6 mg/dL and CG 452 +/- 122.4 mg/dL (P < 0.05). The first dominant follicle (DF) was identified on Day 21 +/- 10.3 (PREG), 36 +/- 28.5 (POSG) and 51 +/- 32.8 (CG) after calving. The difference between PREG and CG was significant (P < 0.05). TC was positively correlated with the calving to first estrus interval (P < 0.05). Results showed that nutritional supplementation before parturition assured good body condition at calving and suggested that it was effective at increasing cholesterol availability to maintain ovarian follicle function and to favor earlier resumption of ovarian activity. (C) 2010 Published by Elsevier B.V.
Resumo:
Meat production by goats has become an important livestock enterprise in several parts of the world. Nonetheless, energy and protein requirements of meat goats have not been defined thoroughly. The objective of this study was to determine the energy and protein requirements for maintenance and growth of 34 3/4 Boer x 1/4 Saanen crossbred, intact male kids (20.5 +/- 0.24 kg of initial BW). The baseline group was 7 randomly selected kids, averaging 21.2 +/- 0.36 kg of BW. An intermediate group consisted of 6 randomly selected kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 28.2 +/- 0.39 kg. The remaining kids (n = 21) were allocated randomly on d 0 to 3 levels of DMI (treatments were ad libitum or restricted to 70 or 40% of the ad libitum intake) within 7 slaughter groups. A slaughter group contained 1 kid from each treatment, and kids were slaughtered when the ad libitum treatment kid reached 35 kg of BW. Individual body components (head plus feet, hide, internal organs plus blood, and carcass) were weighed, ground, mixed, and subsampled for chemical analyses. Initial body composition was determined using equations developed from the composition of the baseline kids. The calculated daily maintenance requirement for NE was 77.3 +/- 1.05 kcal/kg(0.75) of empty BW (EBW) or 67.4 +/- 1.04 kcal/kg(0.75) of shrunk BW. The daily ME requirement for maintenance (118.1 kcal/g(0.75) of EBW or 103.0 kcal/kg(0.75) of shrunk BW) was calculated by iteration, assuming that the heat produced was equal to the ME intake at maintenance. The partial efficiency of use of ME for NE below maintenance was 0.65. A value of 2.44 +/- 0.4 g of net protein/kg(0.75) of EBW for daily maintenance was determined. Net energy requirements for growth ranged from 2.55 to 3.0 Mcal/kg of EBW gain at 20 and 35 kg of BW, and net protein requirements for growth ranged from 178.8 to 185.2 g/kg of EBW gain. These results suggest that NE and net protein requirements for growing meat goats exceed the requirements previously published for dairy goats. Moreover, results from this study suggest that the N requirement for maintenance for growing goats is greater than the established recommendations.
Resumo:
Heat stress causes significant economic losses on broilers production due to poorer performance and carcass quality. Considering that protein has the highest heat increment among nutrients, it has been suggested that protein levels should be reduced in diets for heat-exposed broilers. Nevertheless, there are no conclusive results on the benefits of such practice, and further studies should be performed to elucidate some reported discrepancies. Thus, a trial was carried out to evaluate the effects of dietary protein levels (17, 20 and 23%) and environmental temperature (22 and 32°C) on the performance, nutrients digestibility, and energy and protein metabolism of broiler chickens from 21 to 42 days of age. Nutrients digestibility was determined by total excreta collection, and energy and protein metabolism was evaluated by comparative slaughter method. It was concluded that (1) heat exposure impairs broilers performance and increases nitrogen excretion, but do not change nutrients digestibility; (2) high-protein diets are technically feasible and promotes lower heat production for broilers reared under thermoneutral or hot environments, however, high-protein diets increases nitrogen excretion. © Asian Network for Scientific Information, 2007.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
The aim of the present study was to compare, under the same nursing conditions, the energy-nitrogen balance and the protein turnover in small for gestational age (SGA) and appropriate for gestational age (AGA) low birthweight infants. We compared 8 SGA's (mean +/- s.d.: gestational age 35 +/- 2 weeks, birthweight 1520 +/- 330 g) to 11 AGA premature infants (32 +/- 2 weeks, birthweight 1560 +/- 240 g). When their rate of weight gain was above 15 g/kg/d (17.6 +/- 3.0 and 18.2 +/- 2.6 g/kg/d, mean postnatal age 18 +/- 10 and 20 +/- 9 d respectively) they were studied with respect to their metabolizable energy intake, their energy expenditure, their energy and protein gain and their protein turnover. Energy balance was assessed by the difference between metabolizable energy and energy expenditure as measured by indirect calorimetry. Protein gain was calculated from the amount of retained nitrogen. Protein turnover was estimated by a stable isotope enrichment technique using repeated nasogastric administration of 15N-glycine for 72 h. Although there was no difference in their metabolizable energy intakes (110 +/- 12 versus 108 +/- 11 kcal/kg/d), SGA's had a higher rate of resting energy expenditure (64 +/- 8 versus 57 +/- 8 kcal/kg/d, P less than 0.05). Protein gain and composition of weight gain was very similar in both groups (2.0 +/- 0.4 versus 2.1 +/- 0.4 g protein/kg/d; 3.5 +/- 1.1 versus 3.3 +/- 1.4 g fat/kg/d in SGA's and AGA's respectively). However, the rate of protein synthesis was significantly lower in SGA's (7.7 +/- 1.6 g/kg/d) as compared to AGA's (9.7 +/- 2.8 g/kg/d; P less than 0.05). It is concluded that SGA's have a more efficient protein gain/protein synthesis ratio since for the same weight and protein gains, SGA's show a 20 per cent slower protein turnover. They might therefore tolerate slightly higher protein intakes. Postconceptional age seems to be an important factor in the regulation of protein turnover.
Resumo:
This investigation was carried out to study the influence of early qualitative feed restriction and environmental rearing temperature on long bone development in broiler. Energy and protein restriction reduced femur width and humerus weight, but did not affect tibia parameters. Broilers kept at cold environmental temperature showed reduced femur, tibia and humerus length and tibia weight, but the calculated density was not affected by rearing temperature. These findings suggest that qualitative feed restriction and environmental temperature influenced the normal long bone growth; however, bone weight/bone length index (calculated density) was not affected by rearing temperature. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Non-invasive methods, including stable isotope techniques, indirect calorimetry, nutritional balance and skinfold thickness, have given a new insight into early postnatal growth in neonates. Neonates and premature infants in particular, create an unusual opportunity to study the fluid and metabolic adaptation to extrauterine life because their physical environment can be controlled, fluid and energy balance can be measured and the link between metabolism and the energetics of their postnatal growth can be assessed accurately. Thus the postnatal time course of total body water, heat production, energy cost of growth and composition of weight gain have been quantified in a series of "healthy" low-birth-weight premature infants. These results show that total body water is remarkably stable between postnatal days 3-21. Energy expenditure and heat production rates increase postnatally from mean values of 40 kcal/kg/day during the first week to 60 kcal/kg/day in the third week. An apparent energy balance deficit of 180 kcal/kg can be ascribed to premature delivery. The cost of protein metabolism is the highest energy demanding process related to growth. The fact that nitrogen balance becomes positive within 72 h after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism during early postnatal growth: skinfold thickness, dry body mass and fat decrease, while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches statural growth. The goals of the following review are to summarize data on total body water and energy metabolism in premature infants and to discuss how they correlate with physiological aspects of early postnatal growth.
Resumo:
Objectives: Investigate the impact of the provision of ONS on protein and energy intake from food and ability to meet protein and calorie requirements in people with dementia. Design: After consent by proxy was obtained, participants took part in a cross over study comparing oral intake on an intervention day to an adjacent control day. Setting: The study occurred in Nursing homes and hspitalised settings. Participants: Older adults with dementia over the age of 65 were recruited. 26 participants (aged 83.9+/-8.4 years, MMSE 13.08+/-8.13) took part. Intervention (if any): On the intervention day nutritional supplement drinks were provided three times. Each drink provided 283.3+/-41.8 Kcal of energy and 13.8+/-4.7g of protein. Supplements were removed approximately 1 hour before meals were served and weighed waste (g) was obtained. Measurements: Intake of food consumed was determined on intervention and control days using the quartile method (none, quarter, half, three quarters, all) for each meal component. Results: More people achieved their energy and protein requirements with the supplement drink intervention with no sufficient impact on habitual food consumption. Conclusion: Findings from these 26 participants with dementia indicate that supplement drinks may be beneficial in reducing the prevalence of malnutrition within teh group as more people meet their nutritional requirements. As the provision of supplement drinks is also demonstrated to have an additive effect to consumption of habitual foods, these can be used alongside other measures to also improve oral intake.
Resumo:
The objective of this work was to evaluate the effect of feed deprivation and refeeding with diets containing different energy to protein ratios (E/P) on the performance and physiology of juvenile tambaqui (Colossoma macropomum). A 4x2 factorial arrangement with three replicates was used, with four E/P ratios (11.5, 10.5, 9.5, and 8.5 kcal g-1 digestible energy per protein) and two feeding regimens (with and without deprivation), during 60 days. Fish from the food-deprived group were fasted for 14 days and refed from the fifteenth to the sixtieth day, whereas the remaining fish were fed for 60 days. At the end of the experimental period, weight of fish subjected to food deprivation was lower than that of those continuously fed; however, this condition did not influence the physiological parameters analyzed. Tambaqui fed 11.5 kcal g-1 achieved lower final weight than those fed with the other diets, in both regimens. Among the physiological parameters, only plasma protein presented significant increase in fish fed 8.5 kcal g-1, in both feeding regimens, probably due to the higher dietary protein concentration. These results indicate that fish show a partial compensatory growth, and that 10.5 kcal g-1 can be recommended for the diet of juvenile tambaqui.