980 resultados para driven harmonic oscillator classical dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular dynamical simulation of the normal vibrational mode of water which involves H-O-H angle deformation, when driven by an external force, can be used to see how a driven harmonic oscillator, classically, is associated with the infra-red spectrum of water (and the absorption for this particular normal mode).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical harmonic oscillator and an elementary discussion of the quantum mechanical solutions for the harmonic oscillator are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HCl molecule is simulated (using Maple) in its dynamics, for both vibrational (and implied) rotational motions. A discussion of the center of mass transformations involved is part of the total presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of the generator coordinate method (GCM) for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the unimolecular dissociation and isomerization process (proton transfer) are analyzed. The GCM results, presented in analytical form, provide a very good description and are compared to other methods Like the basis set method and multiconfiguration time dependent self-consistent field. (C) 1998 American Institute of Physics. [S0021-9606(98)50934-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mu s of total simulation time) for the rebinding of NO to myoglobin. The unbound surface ((FeNO)-N-...) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. (C) 2011 Elsevier B.V. All rights reserved.