955 resultados para donor acceptor pair


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently found evidence of new donor acceptor pair (DAP) luminescence in molecular beam epitaxy (MBE) grown films. A variety of nominally undoped samples have been studied by photoluminescence (PL) over a temperature range of 5-300 K. The samples show intensive luminescence al energies of 3.404-3.413 eV varying with different sample at 5 K, as well as a fairly strong (DX)-X-0 line at low temperature. We attribute the Line at 3.404-3.413 eV to DAP recombination which is over 0.1 eV different from the well known DAP caused by ME-doping in GaN. The DAP line shows fine structure. it even predominates in one particular sample. The peak position shifts to higher energy with temperature increasing from 5 up to 70 K, and as the excitation laser intensity increases. The data are consistent with DAP luminescence involving an acceptor level of about 90 meV (presumably carbon) above the valence band edge in GaN. It is much shallower than the acceptor level of 250 meV produced by the p-type dopant Mg which is commonly used at present. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The He I photoelectron spectrum of the diethyl ether-ICl complex has been obtained. The oxygen orbitals are shifted to higher binding energies and that of ICl to lower binding energies owing to complex formation. Ab initio molecular orbital (MO) calculations of the complex molecule showed that the bonding is between the sigma-type lone pair of oxygen and the I atom and that the complex has C-2v symmetry. The binding energy of the complex is computed to be 8.06 kcal mol(-1) at the MP2/3-21G* level. The orbital energies obtained from the photoelectron spectra of the complex are compared and assigned with orbital energies obtained by MO calculations. Natural bond orbital analysis (NBO) shows that charge transfer is from the sigma-type oxygen lone pair to the iodine atom and the magnitude of charge transfer is 0.0744 e.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapter I

Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.

Chapter II

A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.

EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.

EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.

Chapter III

A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report a novel donor-acceptor based solution processable low band gap polymer semiconductor, PDPP-TNT, synthesized via Suzuki coupling using condensed diketopyrrolopyrrole (DPP) as an acceptor moiety with a fused naphthalene donor building block in the polymer backbone. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The hole mobilities of 0.65 cm2 V-1 s-1 and 0.98 cm2 V -1 s-1 are achieved respectively in bottom gate and dual gate OTFT devices with on/off ratios in the range of 105 to 10 7. Additionally, due to its appropriate HOMO (5.29 eV) energy level and optimum optical band gap (1.50 eV), PDPP-TNT is a promising candidate for organic photovoltaic (OPV) applications. When this polymer semiconductor is used as a donor and PC71BM as an acceptor in OPV devices, high power conversion efficiencies (PCE) of 4.7% are obtained. Such high mobility values in OTFTs and high PCE in OPV make PDPP-TNT a very promising polymer semiconductor for a wide range of applications in organic electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donoracceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable temperature i.r. spectroscopic studies of weak pi-donor-pi-acceptor complexes in the crystalline state indicate that the complexes undergo order-disorder transitions, the disorder being caused by molecular motion. Thermodynamic data on the phase transitions along with the spectral data suggest that the high-temperature crystalline forms of the complexes are likely to be pseudoplastic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic and electrochemical redox properties of a series of fluorinated porphyrins bearing donor-acceptor groups and their Zn(II) and Cu(II) derivatives are presented. The magnitude of the ring reduction potentials and charge transfer properties derived from spectral data depend on the nature and position of the substituent(s), (nitro/dimethylamino) and the central metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of polymers containing alternately placed electron-rich dialkoxyilaphthalene (DAN) donors and electron-deficient pyromellitic diimide (PDI) acceptors linked by hexa(oxyethylene) (OE-6) segments, the ability to form a folded D-A stack was intentionally disrupted by random inclusion of varying amounts of a comonomer that is devoid of DAN donor units. NMR spectroscopic studies of folding in these copolymers, induced by NH4SCN that coordinates with the OE-6 segments and facilitates the charge-transfer (C-T) induced D-A stacking, clearly reveals the presence of PDI units that are isolated and those that are located at the ends of (D-A),, stacks. Similar conclusions regarding the presence of stacked and unstacked regions along the polymer chain were also inferred from UV-vis spectroscopic studies that probe the evolution of charge-transfer band. One fascinating aspect of these copolymers wits their ability to undergo it two-step folding: first, short (D-A),, stacks are formed by the interaction of the NH4+ ion with some specific regions of the polymer chain, and subsequently these Stacks are further stacked via a two-point interaction with it suitably designed external folding agent that carries a DAN unit and all ammonium group. In the second step, the interaction first occurs by the coordination of the ammonium group of the folding agent with the OE-6 segment, which in turn facilitates the C-T interaction of the DAN unit with the adjacent uncomplexed PDI units along the polymer chain, leading to an increase ill the slacking. Variations of several spectral features, during both UV-vis and NMR spectroscopic titrations, clearly reveal this novel two-step folding process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Charge-transfer equilibria of a number of substituted pyridines with iodine have been investigated. Solvent effects on the charge-transfer equilibrium of the pyridineiodine system have been examined. Hydrogen bonding data of substituted pyridines with phenol have been reported.