1000 resultados para docosapentaenoic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic fate of dietary n-3 docosapentaenoic acid (DPA) in mammals is currently unknown. The aim of the present study was to determine the extent of conversion of dietary DPA to DHA and EPA in rats. Four groups of male weanling Sprague–Dawley rats (aged 5 weeks) were given 50 mg of DPA, EPA, DHA or oleic acid, daily for 7 d by gavage. At the end of the treatment period, the tissues were analysed for concentrations of long-chain PUFA. DPA supplementation led to significant increases in DPA concentration in all tissues, with largest increase being in adipose (5-fold) and smallest increase being in brain (1·1-fold). DPA supplementation significantly increased the concentration of DHA in liver and the concentration of EPA in liver, heart and skeletal muscle, presumably by the process of retroconversion. EPA supplementation significantly increased the concentration of EPA and DPA in liver, heart and skeletal muscle and the DHA concentration in liver. DHA supplementation elevated the DHA levels in all tissues and EPA levels in the liver. Adipose was the main tissue site for accumulation of DPA, EPA and DHA. These data suggest that dietary DPA can be converted to DHA in the liver, in a short-term study, and that in addition it is partly retroconverted to EPA in liver, adipose, heart and skeletal muscle. Future studies should examine the physiological effect of DPA in tissues such as liver and heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis found that the omega-3 fatty acid, docosapentaenoic acid (DPA) down-regulates the expression levels of key lipogenic genes and proteins in vitro. In vivo studies with labelled DPA showed that, like docosahexaenoic acid, DPA is more conserved from oxidation compared with eicosapentaenoic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish oils and long-chain omega-3 fatty acids are well recognized for their critical role in human diets. Docosapentaenoic acid (DPA, 22:5n-3) has always been a part of healthy nutrition, since infants obtain almost as much DPA as DHA from human milk. Fish oil supplements and ingredients, oily fish, and grass-fed beef can serve as the primary DPA sources for the general population. Although the DPA levels in fish oils are substantially lower than those of EPA and DHA, concentrated DPA products are now becoming commercially available, and DPA-based drugs are under development. Epidemiological studies show that similar to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) acids, DPA is linked to various improvements in human health, perhaps owing to its structural similarity to the other two molecules. Studies in mammals, platelets, and cell cultures have demonstrated that DPA reduces platelet aggregation, and improves lipid metabolism, endothelial cell migration, and resolution of chronic inflammation. Further, other in vivo and in vitro studies have shown that DPA can improve neural health. A human supplementation trial with 99.8% pure DPA suggested that it serves as a storage depot for EPA and DHA in the human body. Future randomized controlled human trials with purified DPA will help clarify its effects on human health. They may confirm the available evidence pointing to its nutritional and biological functions, unique or overlapping with those of EPA and DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5n-3DPA (RvD5n-3DPA) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E2 (15-keto-PGE2). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Docosapentaenoic acid (DPA) is a long-chain n-3 polyunsaturated fatty acid that is intermediary between eicosapentaenoic acid and docosahexaenoic acid in the n-3 synthesis pathway. DPA is part of our normal diet through fish and lean red meat. In recent years, DPA has received increasing attention as an important bioactive fatty acid in light of its potential beneficial health effects, which include anti-inflammatory actions, antiplatelet aggregation, and improved plasma lipid prolife. This review provides a short summary of the most recent research on DPA. RECENT FINDINGS: In this review, we report on the latest association data as well as data generated from in-vitro and in-vivo studies on DPA and cardiovascular health, mental health, inflammation, and cancer. We also report on the newly identified DPA metabolites and their effects on exacerbation of inflammation in animal models. SUMMARY: Although there is a growing body of evidence supporting DPA's role as an important bioactive fatty acid, there is a need for more 'cause and effect studies', clinical trials and studies which can reveal whether DPA plays separate roles to those identified for eicosapentaenoic acid and docosahexaenoic acid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background & aims: Long term parenteral nutrition rarely supplies the long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The aim of this study was to assess long chain n-3 PUFA status in patients receiving home parenteral. nutrition (HPN). Methods: Plasma phospholipid fatty acids were measured in 64 adult HPN patients and compared with 54 age, sex and BMI matched controls. Logistic regression analysis was used to identify factors related to plasma fatty acid fractions in the HPN patients, and to identify factors associated with the risk of clinical. complications. Results: Plasma phospholipid fractions of EPA, DPA and DHA were significantly tower in patients receiving HPN. Factors independently associated with tow fractions included high parenteral energy provision, tow parenteral lipid intake, tow BMI and prolonged duration of HPN. Long chain n-3 PUFA fractions were not associated with incidence of either central venous catheter associated infection or central venous thrombosis. However, the fraction of EPA were inversely associated with plasma alkaline phosphatase concentrations. Conclusions: This study demonstrates abnormal long chain n-3 PUFA profiles in patients receiving HPN. Reduced fatty acid intake may be partly responsible. Fatty acid metabolism may also be altered. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish oil supplementation during pregnancy alters breast milk composition, but there is little information about the impact of oily fish consumption. We determined whether increased salmon consumption during pregnancy alters breast milk fatty acid composition and immune factors. Women (n = 123) who rarely ate oily fish were randomly assigned to consume their habitual diet or to consume 2 portions of farmed salmon per week from 20 wk of pregnancy until delivery. The salmon provided 3.45 g long-chain (LC) (n-3) PUFA/wk. Breast milk fatty acid composition and immune factors [soluble CD14, transforming growth factor-b (TGFb)1, TGFb2, and secretory IgA] were analyzed at 1, 5, 14, and 28 d postpartum (PP). Breast milk from the salmon group had higher proportions of EPA (80%), docosapentaenoic acid (30%), and DHA (90%) on d 5 PP compared with controls (P < 0.01). The LC (n-6) PUFA:LC (n-3) PUFA ratio was lower for the salmon group on all days of PP sampling (P < 0.004), although individual (n-6) PUFA proportions, including arachidonic acid, did not differ. All breast milk immune factors decreased between d 1 and 28 PP (P < 0.001). Breast milk secretory IgA (sIgA) was lower in the salmon group (d 1–28 PP; P = 0.006). Salmon consumption during pregnancy, at the current recommended intakes, increases the LC (n-3) PUFA concentration of breast milk in early lactation, thus improving the supply of these important fatty acids to the breast-fed neonate. The consequence of the lower breast milk concentration of sIgA in the salmon group is not clear.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The lipid and fatty acid (FA) contents of muscle, gonad and digestive glands (DG) of Jade Tiger hybrid abalone were studied over the four seasons. Higher contents of total lipid and saturated fatty acids (SFA) were found in summer from muscle. For gonad the higher total lipid content was found in summer and spring whereas the SFA content peaked in summer only. For DG the higher contents of total lipid and SFA were recorded in all seasons except autumn. Winter samples showed significantly higher content of PUFA in all three types of tissue. High contents of eicosapentaenoic acid (EPA, 20:5 n−3), docosapentaenoic acid (DPA, 22:5 n−3) and docosahexaenoic acid (DHA, 22:6 n−3) were recorded in winter from muscle, although no marked variations were observed from gonad. For DG the high content of DHA was also observed in winter whilst EPA and DPA maintained high levels in all seasons except summer.