926 resultados para diffusion approximation
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
Ce mémoire analyse l’espérance du temps de fixation conditionnellement à ce qu’elle se produise et la probabilité de fixation d’un nouvel allèle mutant dans des populations soumises à différents phénomènes biologiques en uti- lisant l’approche des processus ancestraux. Tout d’abord, l’article de Tajima (1990) est analysé et les différentes preuves y étant manquantes ou incomplètes sont détaillées, dans le but de se familiariser avec les calculs du temps de fixa- tion. L’étude de cet article permet aussi de démontrer l’importance du temps de fixation sur certains phénomènes biologiques. Par la suite, l’effet de la sé- lection naturelle est introduit au modèle. L’article de Mano (2009) cite un ré- sultat intéressant quant à l’espérance du temps de fixation conditionnellement à ce que celle-ci survienne qui utilise une approximation par un processus de diffusion. Une nouvelle méthode utilisant le processus ancestral est présentée afin d’arriver à une bonne approximation de ce résultat. Des simulations sont faites afin de vérifier l’exactitude de la nouvelle approche. Finalement, un mo- dèle soumis à la conversion génique est analysé, puisque ce phénomène, en présence de biais, a un effet similaire à celui de la sélection. Nous obtenons finalement un résultat analytique pour la probabilité de fixation d’un nouveau mutant dans la population. Enfin, des simulations sont faites afin de détermi- nerlaprobabilitédefixationainsiqueletempsdefixationconditionnellorsque les taux sont trop grands pour pouvoir les calculer analytiquement.
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
In this study we investigated the light distribution under femtosecond laser illumination and its correlation with the collected diffuse scattering at the surface of ex-vivo rat skin and liver. The reduced scattering coefficients mu`s for liver and skin due to different scatterers have been determined with Mie-scattering theory for each wavelength (800, 630, and 490 nm). Absorption coefficients mu(a) were determined by diffusion approximation equation in correlation with measured diffused reflectance experimentally for each wavelength (800, 630, and 490 nm). The total attenuation coefficient for each wavelength and type of tissue were determined by linearly fitting the log based normalized intensity. Both tissues are strongly scattering thick tissues. Our results may be relevant when considering the use of femtosecond laser illumination as an optical diagnostic tool. [GRAPHICS] A typical sample of skin exposed to 630 nm laser light (C) 2010 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.
Resumo:
A identificação e descrição dos caracteres litológicos de uma formação são indispensáveis à avaliação de formações complexas. Com este objetivo, tem sido sistematicamente usada a combinação de ferramentas nucleares em poços não-revestidos. Os perfis resultantes podem ser considerados como a interação entre duas fases distintas: • Fase de transporte da radiação desde a fonte até um ou mais detectores, através da formação. • Fase de detecção, que consiste na coleção da radiação, sua transformação em pulsos de corrente e, finalmente, na distribuição espectral destes pulsos. Visto que a presença do detector não afeta fortemente o resultado do transporte da radiação, cada fase pode ser simulada independentemente uma da outra, o que permite introduzir um novo tipo de modelamento que desacopla as duas fases. Neste trabalho, a resposta final é simulada combinando soluções numéricas do transporte com uma biblioteca de funções resposta do detector, para diferentes energias incidentes e para cada arranjo específico de fontes e detectores. O transporte da radiação é calculado através do algoritmo de elementos finitos (FEM), na forma de fluxo escalar 2½-D, proveniente da solução numérica da aproximação de difusão para multigrupos da equação de transporte de Boltzmann, no espaço de fase, dita aproximação P1, onde a variável direção é expandida em termos dos polinômios ortogonais de Legendre. Isto determina a redução da dimensionalidade do problema, tornando-o mais compatível com o algoritmo FEM, onde o fluxo dependa exclusivamente da variável espacial e das propriedades físicas da formação. A função resposta do detector NaI(Tl) é obtida independentemente pelo método Monte Carlo (MC) em que a reconstrução da vida de uma partícula dentro do cristal cintilador é feita simulando, interação por interação, a posição, direção e energia das diferentes partículas, com a ajuda de números aleatórios aos quais estão associados leis de probabilidades adequadas. Os possíveis tipos de interação (Rayleigh, Efeito fotoelétrico, Compton e Produção de pares) são determinados similarmente. Completa-se a simulação quando as funções resposta do detector são convolvidas com o fluxo escalar, produzindo como resposta final, o espectro de altura de pulso do sistema modelado. Neste espectro serão selecionados conjuntos de canais denominados janelas de detecção. As taxas de contagens em cada janela apresentam dependências diferenciadas sobre a densidade eletrônica e a fitologia. Isto permite utilizar a combinação dessas janelas na determinação da densidade e do fator de absorção fotoelétrico das formações. De acordo com a metodologia desenvolvida, os perfis, tanto em modelos de camadas espessas quanto finas, puderam ser simulados. O desempenho do método foi testado em formações complexas, principalmente naquelas em que a presença de minerais de argila, feldspato e mica, produziram efeitos consideráveis capazes de perturbar a resposta final das ferramentas. Os resultados mostraram que as formações com densidade entre 1.8 e 4.0 g/cm3 e fatores de absorção fotoelétrico no intervalo de 1.5 a 5 barns/e-, tiveram seus caracteres físicos e litológicos perfeitamente identificados. As concentrações de Potássio, Urânio e Tório, puderam ser obtidas com a introdução de um novo sistema de calibração, capaz de corrigir os efeitos devidos à influência de altas variâncias e de correlações negativas, observadas principalmente no cálculo das concentrações em massa de Urânio e Potássio. Na simulação da resposta da sonda CNL, utilizando o algoritmo de regressão polinomial de Tittle, foi verificado que, devido à resolução vertical limitada por ela apresentada, as camadas com espessuras inferiores ao espaçamento fonte - detector mais distante tiveram os valores de porosidade aparente medidos erroneamente. Isto deve-se ao fato do algoritmo de Tittle aplicar-se exclusivamente a camadas espessas. Em virtude desse erro, foi desenvolvido um método que leva em conta um fator de contribuição determinado pela área relativa de cada camada dentro da zona de máxima informação. Assim, a porosidade de cada ponto em subsuperfície pôde ser determinada convolvendo estes fatores com os índices de porosidade locais, porém supondo cada camada suficientemente espessa a fim de adequar-se ao algoritmo de Tittle. Por fim, as limitações adicionais impostas pela presença de minerais perturbadores, foram resolvidas supondo a formação como que composta por um mineral base totalmente saturada com água, sendo os componentes restantes considerados perturbações sobre este caso base. Estes resultados permitem calcular perfis sintéticos de poço, que poderão ser utilizados em esquemas de inversão com o objetivo de obter uma avaliação quantitativa mais detalhada de formações complexas.
Resumo:
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steadystate probability density of protocell compositions.
Resumo:
In dieser Arbeit wird eine Klasse von stochastischen Prozessen untersucht, die eine abstrakte Verzweigungseigenschaft besitzen. Die betrachteten Prozesse sind homogene Markov-Prozesse in stetiger Zeit mit Zuständen im mehrdimensionalen reellen Raum und dessen Ein-Punkt-Kompaktifizierung. Ausgehend von Minimalforderungen an die zugehörige Übergangsfunktion wird eine vollständige Charakterisierung der endlichdimensionalen Verteilungen mehrdimensionaler kontinuierlicher Verzweigungsprozesse vorgenommen. Mit Hilfe eines erweiterten Laplace-Kalküls wird gezeigt, dass jeder solche Prozess durch eine bestimmte spektral positive unendlich teilbare Verteilung eindeutig bestimmt ist. Umgekehrt wird nachgewiesen, dass zu jeder solchen unendlich teilbaren Verteilung ein zugehöriger Verzweigungsprozess konstruiert werden kann. Mit Hilfe der allgemeinen Theorie Markovscher Operatorhalbgruppen wird sichergestellt, dass jeder mehrdimensionale kontinuierliche Verzweigungsprozess eine Version mit Pfaden im Raum der cadlag-Funktionen besitzt. Ferner kann die (funktionale) schwache Konvergenz der Prozesse auf die vage Konvergenz der zugehörigen Charakterisierungen zurückgeführt werden. Hieraus folgen allgemeine Approximations- und Konvergenzsätze für die betrachtete Klasse von Prozessen. Diese allgemeinen Resultate werden auf die Unterklasse der sich verzweigenden Diffusionen angewendet. Es wird gezeigt, dass für diese Prozesse stets eine Version mit stetigen Pfaden existiert. Schließlich wird die allgemeinste Form der Fellerschen Diffusionsapproximation für mehrtypige Galton-Watson-Prozesse bewiesen.