583 resultados para courant potassique
Resumo:
Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères.
Resumo:
L’ischémie aigüe (restriction de la perfusion suite à l’infarctus du myocarde) induit des changements majeurs des propriétés électrophysiologique du tissu ventriculaire. Dans la zone ischémique, on observe une augmentation du potassium extracellulaire qui provoque l’élévation du potentiel membranaire et induit un "courant de lésion" circulant entre la zone affectée et saine. Le manque d’oxygène modifie le métabolisme des cellules et diminue la production d’ATP, ce qui entraîne l’ouverture de canaux potassique ATP-dépendant. La tachycardie, la fibrillation ventriculaire et la mort subite sont des conséquences possibles de l’ischémie. Cependant les mécanismes responsables de ces complications ne sont pas clairement établis. La création de foyer ectopique (automaticité), constitue une hypothèse intéressante expliquant la création de ses arythmies. Nous étudions l’effet de l’ischémie sur l’automaticité à l’aide d’un modèle mathématique de la cellule ventriculaire humaine (Ten Tusscher, 2006) et d’une analyse exhaustive des bifurcations en fonction de trois paramètres : la concentration de potassium extracellulaire, le "courant de lésion" et l’ouverture de canaux potassiques ATP-dépendant. Dans ce modèle, nous trouvons que seule la présence du courant de lésion peut entrainer une activité automatique. Les changements de potassium extracellulaire et du courant potassique ATP-dépendant altèrent toutefois la structure de bifurcation.
Resumo:
La fibrillation auriculaire (FA) est le trouble du rythme le plus fréquemment observé en pratique clinique. Elle constitue un risque important de morbi-mortalité. Le traitement de la FA reste un défi majeur en lien avec les nombreux effets secondaires associés aux approches thérapeutiques actuelles. Dans ce contexte, une meilleure compréhension des mécanismes sous-jacents à la FA est essentielle pour le développement de nouvelles thérapies offrant un meilleur rapport bénéfice/risque pour les patients. La FA est caractérisée par i) un remodelage électrique délétère associé le plus souvent ii) à un remodelage structurel du myocarde favorisant la récurrence et le maintien de l’arythmie. La diminution de la période réfractaire effective au sein du tissu auriculaire est un élément clef du remodelage électrique. Le remodelage structurel, quant à lui, se manifeste principalement par une fibrose tissulaire qui altère la propagation de l’influx électrique dans les oreillettes. Les mécanismes moléculaires impliqués dans la mise en place de ces deux substrats restent mal connus. Récemment, le rôle des microARNs (miARNs) a été pointé du doigt dans de nombreuses pathologies notamment cardiaques. Dans ce contexte les objectifs principaux de ce travail ont été i) d'acquérir une compréhension approfondie du rôle des miARNs dans la régulation de l’expression des canaux ioniques et ii) de mieux comprendre le rôle de ces molécules dans l’installation d’un substrat favorable a la FA. Nous avons, dans un premier temps, effectué une analyse bio-informatique combinée à des approches expérimentales spécifiques afin d’identifier clairement les miARNs démontrant un fort potentiel de régulation des gènes codant pour l’expression des canaux ioniques cardiaques humains. Nous avons identifié un nombre limité de miARNs cardiaques qui possédaient ces propriétés. Sur la base de ces résultats, nous avons démontré que l’altération de l'expression des canaux ioniques, observée dans diverse maladies cardiaques (par exemple, les cardiomyopathies, l’ischémie myocardique, et la fibrillation auriculaire), peut être soumise à ces miARNs suggérant leur implication dans l’arythmogénèse. La régulation du courant potassique IK1 est un facteur déterminant du remodelage électrique auriculaire associée à la FA. Les mécanismes moléculaires sous-jacents sont peu connus. Nous avons émis l’hypothèse que l'altération de l’expression des miARNs soit corrélée à l’augmentation de l’expression d’IK1 dans la FA. Nous avons constaté que l’expression de miR-26 est réduite dans la FA et qu’elle régule IK1 en modulant l’expression de sa sous-unité Kir2.1. Nous avons démontré que miR-26 est sous la répression transcriptionnelle du facteur nucléaire des lymphocytes T activés (NFAT) et que l’activité accrue de NFATc3/c4, aboutit à une expression réduite de miR-26. En conséquence IK1 augmente lors de la FA. Nous avons enfin démontré que l’interférence in vivo de miR-26 influence la susceptibilité à la FA en régulant IK1, confirmant le rôle prépondérant de miR-26 dans le remodelage auriculaire électrique. La fibrose auriculaire est un constituant majeur du remodelage structurel associé à la FA, impliquant l'activation des fibroblastes et l’influx cellulaire du Ca2 +. Nous avons cherché à déterminer i) si le canal perméable au Ca2+, TRPC3, jouait un rôle dans la fibrose auriculaire en favorisant l'activation des fibroblastes et ii) étudié le rôle potentiel des miARNs dans ce contexte. Nous avons démontré que les canaux TRPC3 favorisent l’influx du Ca2 +, activant la signalisation Ca2 +-dépendante ERK et en conséquence activent la prolifération des fibroblastes. Nous avons également démontré que l’expression du TRPC3 est augmentée dans la FA et que le blocage in vivo de TRPC3 empêche le développement de substrats reliés à la FA. Nous avons par ailleurs validé que miR-26 régule les canaux TRPC3 en diminuant leur expression dans les fibroblastes. Enfin, nous avons montré que l'expression réduite du miR-26 est également due à l’activité augmentée de NFATc3/c4 dans les fibroblastes, expliquant ainsi l’augmentation de TRPC3 lors de la FA, confirmant la contribution de miR-26 dans le processus de remodelage structurel lié à la FA. En conclusion, nos résultats mettent en évidence l'importance des miARNs dans la régulation des canaux ioniques cardiaques. Notamment, miR-26 joue un rôle important dans le remodelage électrique et structurel associé à la FA et ce, en régulant IK1 et l’expression du canal TRPC3. Notre étude démasque ainsi un mécanisme moléculaire de contrôle de la FA innovateur associant des miARNs. miR-26 en particulier représente apres ces travaux une nouvelle cible thérapeutique prometteuse pour traiter la FA.
Resumo:
Le système rénine-angiotensine est impliqué dans le remodelage structurel et électrique caractérisant la fibrillation auriculaire (FA). L’angiotensine II (ANG II) induit le développement de fibrose et d’hypertrophie au niveau des oreillettes, prédisposant à la FA. Or, les mécanismes électrophysiologiques par lesquels l’ANG II pourrait promouvoir la FA sont peu connus. L’objectif de ce projet de recherche est d’évaluer l’effet de l’ANG II sur les courants potassiques et calciques au niveau auriculaire indépendamment du remodelage structurel. Pour ce faire, nous avons utilisé la technique de patch-clamp avec un modèle de souris surexprimant le récepteur de type 1 à l’angiotensine II (AT1R) spécifiquement au niveau cardiaque. Pour distinguer les effets directs de la surexpression d’AT1R des effets induits par le remodelage cardiaque, nous avons étudié des souris âgées de 180 jours, qui présentent du remodelage structurel, et des souris âgées de 50 jours, qui n’en présentent pas. Des études précédentes sur ce modèle ont montré qu’au niveau des myocytes ventriculaires, l’ANG II réduit le courant potassique global (Ipeak) et rectifiant entrant (IK1) ainsi que le courant calcique de type L (ICaL). Ainsi, notre hypothèse est que l’ANG II modulera aussi ces courants au niveau auriculaire, pouvant ainsi augmenter l’hétérogénéité de repolarisation auriculaire et de ce fait le risque de développer et maintenir la FA. Nous avons observé une diminution significative de la densité d’IK1 dans l’oreillette gauche des souris transgéniques sans changement d’Ipeak. De plus, la densité d’ ICaL n’est pas réduite chez les souris transgéniques âgées de 50 jours. En conclusion, l’effet de l’ANG II sur les courants potassiques et calciques semble dépendre de la chambre cardiaque. En effet, nous savions que l’ANGII réduisait Ipeak, IK1 et ICaL au niveau ventriculaire, mais nos résultats ont montré qu’il ne les affectait pas directement au niveau des oreillettes. Ceci suggère des mécanismes de régulation impliquant des voies de signalisation distinctes selon les chambres cardiaques. Enfin, nos résultats montrant l’absence de l’influence directe de la surexpression d’AT1R sur les canaux K+ et Ca2+ au niveau des myocytes auriculaires renforcent l’importance d’approfondir nos connaissances sur les effets de l’angiotensine II sur le développement de la fibrose, sur le remodelage structurel et sur la conduction électrique cardiaque.
Resumo:
Collection : Bibliothèque fiscale Dalloz