968 resultados para corrosion mechanism
Understanding the corrosion mechanism: a framework for improving the performance of magnesium alloys
Resumo:
Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this paper, approach in the field of SBS corrosion is reviewed. Electrochemical and microbial corrosion factors, corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed here.
Resumo:
The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.
Resumo:
This review aims to provide a foundation for the safe and effective use of magnesium (Mg) alloys, including practical guidelines for the service use of Mg alloys in the atmosphere and/or in contact with aqueous solutions. This is to provide support for the rapidly increasing use of Mg in industrial applications, particularly in the automobile industry. These guidelines should be firmly based on a critical analysis of our knowledge of SCC based on (1) service experience, (2) laboratory testing and (3) understanding of the mechanism of SCC, as well as based on an understanding of the Mg corrosion mechanism.
Resumo:
Various Plasma Electrolytic Oxidation (PEO) ceramic coatings were prepared on LY12 aluminum alloy by adjusting the concentration of sodium silicate solution. Optical microscope (OM), XRD and EIS were used to study their morphology, composition and anti corrosion behavior in NaCl solution. Increasing concentration of sodium silicate leads to the increase of the total coating thickness while too high and too low concentration lead to the decrease of inner dense layer. The main composition of PEO coatings prepared in 20, 40 and above 60g/L concentration solution are correspondingly alumina, alumina with mullite, and amorphous phase. The corrosion resistance is determined by the inner dense layer. Increasing the thickness of inner dense layer can improve the anti-corrosion performance. PEO coating's corrosion resistance in acidic, alkaline and neutral NaCl solution is proved and the corrosion mechanism involved is also discussed.
Resumo:
对离子交换波导制备过程中掺铒磷酸盐玻璃表面的侵蚀问题进行了研究,分析了产生侵蚀的原因,提出镀K9玻璃薄膜的方法,对掺铒磷酸盐玻璃表面进行保护.采用光学显微镜和原子力显微镜对波导表面特性进行了表征。同时对平板波导的光学特性进行了测试.研究表明K9玻璃薄膜不仅能够对掺铒磷酸盐玻璃起到保护作用,同时允许交换离子透过进入磷酸盐玻璃形成波导层.
Resumo:
CORROSION; MECHANISM; WATER; ZINC
Resumo:
铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。
Resumo:
The electrochemical behaviour of coated Cr3C2-NiCr steel in aerated 0.5 M H2SO4 solution was studied by means of electrochemical a.c. and d.c. measurements. A complete structural characterization of the coated steel before and after electrochemical tests was also carried out to access the corrosion mechanism of coated steel, electrolyte penetration through the coating, and to confirm the results obtained using electrochemical techniques. Two types of Cr3C2-NiCr coatings produced by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences between coated steels are related to the spraying parameters reflecting their behaviour against corrosion phenomena. The electrochemical behaviour of the coated steel was strongly influenced by porosity and the presence of microcracks in the coating. Once the electrolyte reaches the steel substrate, it corrodes in a galvanic manner resulting in coating detachment from the steel.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
All refractories show enhanced corrosion near the slag/metal interface due to Marangoni and convective flows. However, in the case of oxide refractories containing graphite flakes, corrosion is severe due to periodic oscillations in the contact angle at the slag/metal interface, resulting in cyclic dissolution of oxide and graphite into the slag and metal, respectively. Alumina--graphite (AG) refractories should be used only where they are not in simultaneous contact with slag (flux) and low carbon steel.
Resumo:
Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.
Resumo:
A new model is presented which describes the growth of the duplex layers of Fe3O4 on mild steel in high temperature, deoxygenated, neutral or alkaline aqueous solutions. It is shown that the layers grow by the ingress of water along oxide micropores to the metal-oxide interface and by the rate-limiting outward diffusion of Fe ions along oxide grain boundaries. The new model accounts for the observed temperature-dependence and pH-dependence of the corrosion, the morphology of inner and outer layer crystallites, the segregation of alloying elements, and the location of hydrogen evolution. The model can also be generalized to other steels and alloys. © 1989.