991 resultados para computer profiling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer forensics is the process of gathering and analysing evidence from computer systems to aid in the investigation of a crime. Typically, such investigations are undertaken by human forensic examiners using purpose-built software to discover evidence from a computer disk. This process is a manual one, and the time it takes for a forensic examiner to conduct such an investigation is proportional to the storage capacity of the computer's disk drives. The heterogeneity and complexity of various data formats stored on modern computer systems compounds the problems posed by the sheer volume of data. The decision to undertake a computer forensic examination of a computer system is a decision to commit significant quantities of a human examiner's time. Where there is no prior knowledge of the information contained on a computer system, this commitment of time and energy occurs with little idea of the potential benefit to the investigation. The key contribution of this research is the design and development of an automated process to describe a computer system and its activity for the purposes of a computer forensic investigation. The term proposed for this process is computer profiling. A model of a computer system and its activity has been developed over the course of this research. Using this model a computer system, which is the subj ect of investigation, can be automatically described in terms useful to a forensic investigator. The computer profiling process IS resilient to attempts to disguise malicious computer activity. This resilience is achieved by detecting inconsistencies in the information used to infer the apparent activity of the computer. The practicality of the computer profiling process has been demonstrated by a proof-of concept software implementation. The model and the prototype implementation utilising the model were tested with data from real computer systems. The resilience of the process to attempts to disguise malicious activity has also been demonstrated with practical experiments conducted with the same prototype software implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the use of models in automatic computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgements as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the information needed to decide whether manual analysis is required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer profiling is the automated forensic examination of a computer system in order to provide a human investigator with a characterisation of the activities that have taken place on that system. As part of this process, the logical components of the computer system – components such as users, files and applications - are enumerated and the relationships between them discovered and reported. This information is enriched with traces of historical activity drawn from system logs and from evidence of events found in the computer file system. A potential problem with the use of such information is that some of it may be inconsistent and contradictory thus compromising its value. This work examines the impact of temporal inconsistency in such information and discusses two types of temporal inconsistency that may arise – inconsistency arising out of the normal errant behaviour of a computer system, and inconsistency arising out of deliberate tampering by a suspect – and techniques for dealing with inconsistencies of the latter kind. We examine the impact of deliberate tampering through experiments conducted with prototype computer profiling software. Based on the results of these experiments, we discuss techniques which can be employed in computer profiling to deal with such temporal inconsistencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road surface skid resistance has been shown to have a strong relationship to road crash risk, however, applying the current method of using investigatory levels to identify crash prone roads is problematic as they may fail in identifying risky roads outside of the norm. The proposed method analyses a complex and formerly impenetrable volume of data from roads and crashes using data mining. This method rapidly identifies roads with elevated crash-rate, potentially due to skid resistance deficit, for investigation. A hypothetical skid resistance/crash risk curve is developed for each road segment, driven by the model deployed in a novel regression tree extrapolation method. The method potentially solves the problem of missing skid resistance values which occurs during network-wide crash analysis, and allows risk assessment of the major proportion of roads without skid resistance values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few years, there has been a steady increase in the attention, importance and focus of green initiatives related to data centers. While various energy aware measures have been developed for data centers, the requirement of improving the performance efficiency of application assignment at the same time has yet to be fulfilled. For instance, many energy aware measures applied to data centers maintain a trade-off between energy consumption and Quality of Service (QoS). To address this problem, this paper presents a novel concept of profiling to facilitate offline optimization for a deterministic application assignment to virtual machines. Then, a profile-based model is established for obtaining near-optimal allocations of applications to virtual machines with consideration of three major objectives: energy cost, CPU utilization efficiency and application completion time. From this model, a profile-based and scalable matching algorithm is developed to solve the profile-based model. The assignment efficiency of our algorithm is then compared with that of the Hungarian algorithm, which does not scale well though giving the optimal solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an extension to the Rapidly-exploring Random Tree (RRT) algorithm applied to autonomous, drifting underwater vehicles. The proposed algorithm is able to plan paths that guarantee convergence in the presence of time-varying ocean dynamics. The method utilizes 4-Dimensional, ocean model prediction data as an evolving basis for expanding the tree from the start location to the goal. The performance of the proposed method is validated through Monte-Carlo simulations. Results illustrate the importance of the temporal variance in path execution, and demonstrate the convergence guarantee of the proposed methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User profiling is the process of constructing user models which represent personal characteristics and preferences of customers. User profiles play a central role in many recommender systems. Recommender systems recommend items to users based on user profiles, in which the items can be any objects which the users are interested in, such as documents, web pages, books, movies, etc. In recent years, multidimensional data are getting more and more attention for creating better recommender systems from both academia and industry. Additional metadata provides algorithms with more details for better understanding the interactions between users and items. However, most of the existing user/item profiling techniques for multidimensional data analyze data through splitting the multidimensional relations, which causes information loss of the multidimensionality. In this paper, we propose a user profiling approach using a tensor reduction algorithm, which we will show is based on a Tucker2 model. The proposed profiling approach incorporates latent interactions between all dimensions into user profiles, which significantly benefits the quality of neighborhood formation. We further propose to integrate the profiling approach into neighborhoodbased collaborative filtering recommender algorithms. Experimental results show significant improvements in terms of recommendation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Service oriented architecture is gaining momentum. However, in order to be successful, the proper and up-to-date description of services is required. Such a description may be provided by service profiling mechanisms, such as one presented in this article. Service profile can be defined as an up-to-date description of a subset of non-functional properties of a service. It allows for service comparison on the basis of non-functional parameters, and choosing the service which is most suited to the needs of a user. In this article the notion of a service profile along with service profiling mechanism is presented as well as the architecture of a profiling system. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.