53 resultados para chalcone
Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis
Resumo:
Activity-directed fractionation and purification processes were employed to identify isoflavonoids with antioxidant and antimicrobial activities from Brazilian red propolis. Crude propolis was extracted with ethanol (80%. v/v) and fractioned by liquid-liquid extraction technique using hexane and chloroform. Since chloroform fraction showed strong antioxidant and antimicrobial activities it was purified and isolated using various chromatographic techniques. Comparing our spectral data (UV, NMR, and mass spectrometry) with values found in the literature, we identified two bioactive isoflavonoids (vestitol and neovestitol), together with one chalcone (isoliquiritigenin). Vestitol presented higher antioxidant activity against beta-carotene consumption than neovestitol. The antimicrobial activity of these three compounds against Staphylococcus aureus, Streptococcus mutans, and Actinomyces naeslundii was evaluated and we concluded that isoliquiritigenin was the most active one with lower MIC, ranging from 15.6 to 62.5 mu g/mL. Our results showed that Brazilian red propolis has biologically active isoflavonoids that may be used as a mild antioxidant and antimicrobial for food preservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
Resumo:
The compounds [Fe(ch)(CO)(2)PP3] (1) (ch = chalcone) and [Fe(sba)(CO)(2)PPh3] (2) (sba = sorbic acid) were prepared by irradiating the tetracarbonyltriphenylphosphineiron(0) complex in benzene in the presence of ch or sba. The compounds were characterized by infrared and P-31 NMR spectroscopies. Their electrochemical behavior was investigated by cyclic voltammetry and the results suggest that their oxidations occur by more than one electrochemical step, producing free ch and sba, free PPh3 and solvated Fe(III). It was observed that sba ligand contributes more effectively to the stabilization of metal center in these complexes, the X-ray crystal and molecular structures of 1 and 2 were determined; it was shown that the Fe atom adopts a distorted octahedral coordinated geometry in which three of the sites are occupied by the ch or sba ligand. The [Fe(ch)(CO)(2)PPh3] complex is a monomer and the unit cell of complex 2 contains exist two identical and crystallographically independent molecules of [Fe(sba)(CO)(2)PPh3] which are linked by short hydrogen bonds O-H . . .O (C) 2001 Published by Elsevier B.V. Ltd.
Resumo:
Biflavones and a chalcone flavone tetramer were isolated from the leaves of Aristolochia ridicula, together with proto-quercitol. Their structures were determined by spectroscopic methods. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
Microbeam radiation therapy (MRT), a preclinical form of radiosurgery, uses spatially fractionated micrometre-wide synchrotron-generated X-ray beams. As MRT alone is predominantly palliative for animal tumors, the effects of the combination of MRT and a newly synthesized chemotherapeutic agent JAI-51 on 9L gliosarcomas have been evaluated. Fourteen days (D14) after implantation (D0), intracerebral 9LGS-bearing rats received either MRT, JAI-51 or both treatments. JAI-51, alone or immediately after MRT, was administered three times per week. Animals were kept up to ∼20 weeks after irradiation or sacrificed at D16 or D28 after treatment for cell cycle analysis. MRT plus JAI-51 increased significantly the lifespan compared with MRT alone (p = 0.0367). JAI-51 treatment alone had no effect on rat survival. MRT alone or associated with JAI-51 induced a cell cycle blockade in G2/M (p < 0.01) while the combined treatment also reduced the proportion of G0/G1 cells. At D28 after irradiation, MRT and MRT/JAI-51 had a smaller cell blockade effect in the G2/M phase owing to a significant increase in tumor cell death rate (<2c) and a proportional increase of endoreplicative cells (>8c). The combination of MRT and JAI-51 increases the survival of 9LGS-bearing rats by inducing endoreduplication of DNA and tumor cell death; further, it slowed the onset of tumor growth resumption two weeks after treatment.
Resumo:
Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141–147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.
Resumo:
Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.
Resumo:
The evolution of the chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), EC 2.3.1.74] multigene family in the genus Ipomoea is explored. Thirteen CHS genes from seven Ipomoea species (family Convolvulaceae) were sequenced--three from genomic clones and the remainder from PCR amplification with primers designed from the 5' flanking region and the end of the 3' coding region of Ipomoea purpurea Roth. Analysis of the data indicates a duplication of CHS that predates the divergence of the Ipomoea species in this study. The Ipomoea CHS genes are among the most rapidly evolving of the CHS genes sequenced to date. The CHS genes in this study are most closely related to the Petunia CHS-B gene, which is also rapidly evolving and highly divergent from the rest of the Petunia CHS sequences.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Four male cone-specific promoters were isolated from the genome of Pinus radiata D. Don, fused to the beta-glucuronidase (GUS) reporter gene and analysed in the heterologous host Arabidopsis thaliana (L.) Heynh. The temporal and spatial activities of the promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1 during seven anther developmental stages are described in detail. The two promoters PrMC2 and PrMALE1 confer an identical GUS expression pattern on Arabidopsis anthers. DNA sequence analysis of the PrMC2 and PrMALE1 promoters revealed an 88% sequence identity over 276 bp and divergence further upstream (