992 resultados para central limit theorem
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...
Resumo:
Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.
Resumo:
We study a general stochastic rumour model in which an ignorant individual has a certain probability of becoming a stifler immediately upon hearing the rumour. We refer to this special kind of stifler as an uninterested individual. Our model also includes distinct rates for meetings between two spreaders in which both become stiflers or only one does, so that particular cases are the classical Daley-Kendall and Maki-Thompson models. We prove a Law of Large Numbers and a Central Limit Theorem for the proportions of those who ultimately remain ignorant and those who have heard the rumour but become uninterested in it.
Resumo:
In this paper, we consider an exchange economy µa la Shitovitz (1973), with atoms and an atomless set. We associate with it a strategic market game of the kind first proposed by Lloyd S. Shapley and known as the Shapley window model. We analyze the relationship between the set of the Cournot-Nash equilibrium allocations of the strategic market game and the Walras equilibrium allocations of the exchange economy with which it is associated. We show, with an example, that even when atoms are countably in¯nite, any Cournot-Nash equilibrium allocation of the game is not a Walras equilibrium of the underlying exchange economy. Accordingly, in the original spirit of Cournot (1838), we par- tially replicate the mixed exchange economy by increasing the number of atoms, without a®ecting the atomless part, and ensuring that the measure space of agents remains finite. We show that any sequence of Cournot-Nash equilibrium allocations of the strategic market games associated with the partially replicated exchange economies approximates a Walras equilibrium allocation of the original exchange economy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents the asymptotic theory for nondegenerate U-statistics of high frequency observations of continuous Itô semimartingales. We prove uniform convergence in probability and show a functional stable central limit theorem for the standardized version of the U-statistic. The limiting process in the central limit theorem turns out to be conditionally Gaussian with mean zero. Finally, we indicate potential statistical applications of our probabilistic results.
Resumo:
Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.
Resumo:
We report numerically and analytically estimated values for the Hurst exponent for a recently proposed non-Markovian walk characterized by amnestically induced persistence. These results are consistent with earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally, we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These results are interpreted and discussed in the context of the necessary and sufficient conditions for the central limit theorem to hold.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
We analyze the sequences of round-off errors of the orbits of a discretized planar rotation, from a probabilistic angle. It was shown [Bosio & Vivaldi, 2000] that for a dense set of parameters, the discretized map can be embedded into an expanding p-adic dynamical system, which serves as a source of deterministic randomness. For each parameter value, these systems can generate infinitely many distinct pseudo-random sequences over a finite alphabet, whose average period is conjectured to grow exponentially with the bit-length of the initial condition (the seed). We study some properties of these symbolic sequences, deriving a central limit theorem for the deviations between round-off and exact orbits, and obtain bounds concerning repetitions of words. We also explore some asymptotic problems computationally, verifying, among other things, that the occurrence of words of a given length is consistent with that of an abstract Bernoulli sequence.
Resumo:
O Teorema Central do Limite e a Lei dos Grandes Números estão entre os mais importantes resultados da teoria da probabilidade. O primeiro deles busca condições sob as quais [fórmula] converge em distribuição para a distribuição normal com parâmetros 0 e 1, quando n tende ao infinito, onde Sn é a soma de n variáveis aleatórias independentes. Ao mesmo tempo, o segundo estabelece condições para que [fórmula] convirja a zero, ou equivalentemente, para que [fórmula] convirja para a esperança das variáveis aleatórias, caso elas sejam identicamente distribuídas. Em ambos os casos as sequências abordadas são do tipo [fórmula], onde [fórmula] e [fórmula] são constantes reais. Caracterizar os possíveis limites de tais sequências é um dos objetivos dessa dissertação, já que elas não convergem exclusivamente para uma variável aleatória degenerada ou com distribuição normal como na Lei dos Grandes Números e no Teorema Central do Limite, respectivamente. Assim, somos levados naturalmente ao estudo das distribuições infinitamente divisíveis e estáveis, e os respectivos teoremas limites, e este vem a ser o objetivo principal desta dissertação. Para as demonstrações dos teoremas utiliza-se como estratégia principal a aplicação do método de Lyapunov, o qual consiste na análise da convergência da sequência de funções características correspondentes às variáveis aleatórias. Nesse sentido, faremos também uma abordagem detalhada de tais funções neste trabalho.