795 resultados para cartoon fur texture
Resumo:
低成本卡通制作中的图像和视频通常缺乏对动物角色毛发效果的表现,为了能对已有图像及视频中的动物角色进行处理,为其增添具备真实感的毛发效果,提出一种毛发风格化算法——卡通化毛发纹理算法.针对卡通中的动物角色合成毛发纹理并进行替换,分为图像应用及视频应用2个部分.在图像替换时,对要进行风格化处理的目标区域进行图像结构分析,以获取覆盖目标区域的三角网格,再生成毛发纹元并映射于网格之上,通过绘制纹元来生成具备真实感的毛发效果;在进行视频替换时,提取视频关键帧并基于图像应用算法生成相应的卡通化毛发纹理进行图像替换,之后根据关键帧的替换结果指导整个视频的替换.为了获取随时间变化的图像关键帧目标区域,采用SIFT算法计算特征点在时间轴上的匹配;为了快速合成卡通化毛发纹理,采用基于GPU的光线行进算法加速毛发纹元的体绘制过程.实验结果表明,文中算法可成功地对已有图像及视频的动物角色添加具备真实感的毛发效果.
Resumo:
In this work we propose a new image inpainting technique that combines texture synthesis, anisotropic diffusion, transport equation and a new sampling mechanism designed to alleviate the computational burden of the inpainting process. Given an image to be inpainted, anisotropic diffusion is initially applied to generate a cartoon image. A block-based inpainting approach is then applied so that to combine the cartoon image and a measure based on transport equation that dictates the priority on which pixels are filled. A sampling region is then defined dynamically so as to hold the propagation of the edges towards image structures while avoiding unnecessary searches during the completion process. Finally, a cartoon-based metric is computed to measure likeness between target and candidate blocks. Experimental results and comparisons against existing techniques attest the good performance and flexibility of our technique when dealing with real and synthetic images. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.
Resumo:
Introduction: 3.0 Tesla MRI offers the potential to quantify the volume fraction and structural texture of cancellous bone, along with quantification of marrow composition, in a single non-invasive examination. This study describes our preliminary investigations to identify parameters which describe cancellous bone structure including the relationships between texture and volume fraction.
Resumo:
Texture based techniques for visualisation of unsteady vector fields have been applied for the visualisation of a Finite volume model for variably saturated groundwater flow through porous media. This model has been developed by staff in the School of Mathematical Sciences QUT for the study of salt water intrusion into coastal aquifers. This presentation discusses the implementation and effectiveness of the IBFV algorithm in the context of visualisation of the groundwater simulation outputs.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions
Resumo:
Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.
Resumo:
This paper suggests an approach for finding an appropriate combination of various parameters for extracting texture features (e.g. choice of spectral band for extracting texture feature, size of the moving window, quantization level of the image, and choice of texture feature etc.) to be used in the classification process. Gray level co-occurrence matrix (GLCM) method has been used for extracting texture from remotely sensed satellite image. Results of the classification of an Indian urban environment using spatial property (texture), derived from spectral and multi-resolution wavelet decomposed images have also been reported. A multivariate data analysis technique called ‘conjoint analysis’ has been used in the study to analyze the relative importance of these parameters. Results indicate that the choice of texture feature and window size have higher relative importance in the classification process than quantization level or the choice of image band for extracting texture feature. In case of texture features derived using wavelet decomposed image, the parameter ‘decomposition level’ has almost equal relative importance as the size of moving window and the decomposition of images up to level one is sufficient and there is no need to go for further decomposition. It was also observed that the classification incorporating texture features improves the overall classification accuracy in a statistically significant manner in comparison to pure spectral classification.