955 resultados para aluminium-based alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue behaviour of the cold chamber pressure-die-cast alloys: Mazak3, ZA8, ZA27, M3K, ZA8K, ZA27K, K1, K2 and K3 was investigated at temperature of 20°C. The alloys M3K, ZA8K and ZA27K were also examined at temperatures of 50 and 100°C. The ratio between fatigue strength and tensile strength was established at 20°C at 107 cycles. The fatigue life prediction of the alloys M3K, ZA8K and ZA27K was formulated at 20, 50 and 100°C. The prediction formulae were found to be reasonably accurate. All of the experimental alloys were heterogeneous and contained large but varying amounts of pores. These pores were a major contribution and dominated the alloys fatigue failure. Their effect, however, on tensile failure was negligible. The ZA27K possessed the highest tensile strength but the lowest fatigue strength. The relationship between the fracture topography and the microstructure was also determined by the use of a mixed signal of a secondary electron and a back-scattered electron on the SEM. The tensile strength of the experimental alloys was directly proportional to the aluminium content within the alloys. The effect of copper content was also investigated within the alloys K1, K2, ZA8K and K3 which contained 0%, 0.5%, 1.0% and 2.0% respectively. It was determined that the fatigue and tensile strengths improved with higher copper contents. Upon ageing the alloys Mazak3, ZA8 and ZA27 at an ambient temperature for 5 years, copper was also found to influence and maintain the metastable Zn-Al (αm) phase. The copper free Mazak3 upon ageing lost this metastable phase. The 1.0% copper ZA8 alloy had lost almost 50% of its metastable phase. Finally the 2.0% copper ZA27 had merely lost 10% of its metastable phase. The cph zinc contained a limited number of slip systems, therefore twinning deformation was unavoidable in both fatigue and tensile testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical resistivity measurements and scanning electron microscopy was used to study the dissolution of silver on Cu-Ag and Cu-Al-Ag alloys. The results seem to indicate that the dissolution temperature is affected by the addition of aluminium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of strontium on the solidi. cation mode of hypereutectic aluminium-silicon alloys have been studied. Samples were prepared from an aluminium-17wt% silicon-based alloy and strontium was added at several different concentrations. The development of the microstructure was investigated by cooling curve analysis, interrupted solidi. cation experiments and optical and scanning electron microscopy. It was found that nucleation of primary silicon is suppressed by additions of strontium. The suppressed nucleation results in supersaturation of the liquid prior to nucleation, and an increased growth rate after nucleation. As a result, the silicon crystals become less faceted and more dendritic with increasing strontium additions. Increasing the strontium concentration slightly refined the eutectic spacing and introduced a small amount of fibrous silicon. Electron back-scatter diffraction measurements were performed to determine the crystallographic relation between the primary and eutectic silicon phases. The eutectic silicon in the unmodified alloy does not have any crystallographic relationship with the primary silicon crystals. In contrast, the eutectic silicon crystals in the strontium-modified alloys often share an identical or twin relationship with nearby primary silicon crystals. The incidence of twinning within primary silicon crystals was relatively low and did not appear to increase with strontium additions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently it has been shown that modification with strontium causes an increase in the size of eutectic grains. The eutectic grain size increases because there are fewer nucleation events, possibly due to the poisoning of phosphorus-based nuclei that are active in the unmodified alloy. The current paper investigates the effect of strontium concentration on the eutectic grain size. In the aluminium-10 wt.% silicon alloy used in this research, for fixed casting conditions, the eutectic grain size increases as the strontium concentration increases up to approximately 150ppm, beyond which the grain size is relatively stable. This critical strontium concentration is likely to differ depending on the composition of the base alloy, including the concentration of minor elements and impurities. It is concluded that processing and in-service properties of strontium modified aluminium-silicon castings are likely to be more stable if a minimum critical strontium concentration is exceeded. If operating below this critical strontium concentration exceptional control over composition and casting conditions is required. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon particles standing proud on aluminium-silicon alloy surfaces provide protection in tribology. Permanent sinking of such particles into the matrix under load can be deleterious. The mechanical response of the alloy to nano-indentation of single silicon particles embedded in the matrix is explored. A nominal critical pressure required to plastically deform the matrix to permanently embed the particle is determined experimentally. Within a framework suggested by two-dimensional models of plastic response to indentation, a probable correlation is established between the normal mean pressure required to cause permanent sinking of silicon particles and a factor which relates the relevant particle dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.