693 resultados para alkyl ferulates
Resumo:
From the hexane extract of barks of Tapirira guianensis were isolated and identified beta-sitosterol, 3beta-O-beta-D-glucopyranosyl-sitosterol, sitostenone and stigmast-4-en-6beta-ol-3-one. Besides these compounds six alkyl ferulates were obtained including a new one with an unusual odd alkyl chain, nonadecyl coumarate. All structures were determined by spectral data.
Resumo:
This work describes the phytochemical study of hexane extracts from the stem of Maprounea guianensis. Besides 3-oxo-21alpha-H-hop-22(29)-en (moretenone), beta-sitosterol, lupenone and lupeol, a mixture of dodecosyl, tetracosyl, hexacosyl, octacosyl and triacontyl ferulates was also isolated, as well as 3-beta-acetoxy-lup-20(29)-en-28-oic acid, 3beta-O-trans-p-coumaroyl-lup-20(29)-en-28-oic acid and 3beta-O-trans-p-coumaroyl-urs-12-en-28-oic acid. The structures of these compounds were established by spectroscopic analysis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The structure of lignin and suberin, and ferulic acid (FA) content in cork from Quercus suber L. were studied. Extractive-free cork (Cork), suberin, desuberized cork (Cork(sap)), and milled-cork lignins (MCL) from Cork and Cork(sap) were isolated. Suberin composition was determined by GC-MS/FID, whereas the polymers structure in Cork, Corksap, and MCL was studied by Py-TMAH and 2D-HSQC-NMR. Suberin contained 94.4% of aliphatics and 3.2% of phenolics, with 90% of omega-hydroxyacids and alpha,omega-diacids. FA represented 2.7% of the suberin monomers, overwhelmingly esterified to the cork matrix. Py-TMAH revealed significant FA amounts in all samples, with about 3% and 6% in cork and cork lignins, respectively. Py-TMAH and 2D-HSQC-NMR demonstrated that cork lignin is a G-lignin (>96% G units), with a structure dominated by beta-O-4' alkyl-aryl ether linkages (80% and 77% of all linkages in MCL and MCLsap, respectively), followed by phenylcoumarans (18% and 20% in MCL and MCLsap, respectively), and smaller amounts of resinols (ca. 2%) and dibenzodioxocins (1%). HSQC also revealed that cork lignin is heavily acylated (ca. 50%) exclusively at the side-chain gamma-position. Ferulates possibly have an important function in the chemical assembly of cork cell walls with a cross-linking role between suberin, lignin and carbohydrates.
Resumo:
FAPESP[07/5904-2]
Resumo:
The quenching of the triplet state of three n-alkyl 3-nitrophenyl ethers: 3-nitroanisol (3-NA), n-butyl 3-nitrophenyl ether (3-NB) and n-decyl 3-nitrophenyl ether (3-ND) by four aniline derivatives: aniline (AN), N,N-dimethylaniline (DMA), 2,4,6-trimethylaniline (TMA), and 4-tetradecylaniline (TDA), was investigated in aqueous micellar SDS solutions by laser flash photolysis. The transient absorption spectra for 3-NA and 3-NB reveal the formation of long-lived intermediate species in the presence of all four quenchers. while for 3-ND no amine-induced intermediates are observed. Comparison of the transient absorption spectra of the probe 3-NA in the presence of DMA in aqueous and micellar solutions shows that the intermediate species are favored by the SDS micelles. With DMA and TMA as quenchers the intermediates are suggested to be the ion radicals generated by single electron transfer from the amine to the probe in the triplet excited state. For the quenchers AN and TDA, the intermediates may be a-complexes. The relative quenching efficiencies generally decrease as the affinity of the quencher for the micellar phase (AN < DMA < TMA < TDA) increases and the mobility of the excited probe (3-NA > 2-NB) decreases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background and aims-The colons of patients with pneumatosis cystoides coli produce excessive H-2. Exposure to alkyl halides could explain this. Six consecutive patients who had pneumatosis cystoides coli while taking chloral hydrate (1-5+ g/day) are reported. Patients 2 and 3 were investigated after they had ceased chloral hydrate treatment. One produced methane, the other did not. (Pneumatosis cystoides coli patients are non-methanogenic according to the literature.) Both had overnight fasting breath H-2 of less than 10 ppm. A literature review disclosed just one patient who was using chloral at the time of diagnosed pneumatosis cystoides coli, but an epidemic of the disease in workers exposed to trichloroethylene. Methods-(i) In vitro experiments with human faeces: chloral or closely related alkyl halides were added to anaerobic faecal cultures derived from four methane-producing and three non-methanogenic human subjects. H-2 and CH4 gases were measured. (ii) In vivo animal experiment: chloral hydrate was added to drinking water of four Wistar rats, and faecal HI compared with control rats. Results-Alkyl halides increased H-2 up to 900 times in methanogenic and 10 times in non-methanogenic faecal cultures. The K-i of chloral was 0.2 mM. Methanogenesis was inhibited in concert with the increase in net H-2. In the rat experiment, chloral hydrate increased H-2 10 times, but did not cause pneumatosis. Conclusions-Chloral and trichloroethylene are alkyl halides chemically similar to chloroform, a potent inhibitor of H-2 consumption by methanogens and acetogens. These bacteria are the most important H-2-consuming species in the colon. It is postulated that exposure to these alkyl halides increases net H-2 production, which sets the scene for counterperfusion supersaturation and the formation of gas cysts. In recent times, very low prescribing rates for chloral have caused primary pneumatosis cystoides to become extremely rare. As with primary pneumatosis, secondary pneumatosis cystoides, which occurs if there is small bowel bacterial overgrowth distal to a proximally located gut obstruction, is predicted by counterperfusion supersaturation. Inherent unsaturation due to metabolism of O-2 is a safety factor, which could explain why gas bubbles do not form more often in tissue with high H-2 tension.
Resumo:
Three new amino alcohols presumably deriving from L-alanine were isolated from the tropical marine sponge Haliclona n. sp. and characterized by 2D NMR, while a fourth amino alcohol was characterized as an acetamide derivative. Relative stereochemistry was deduced from the NMR characteristics of oxazolidinone derivatives and absolute stereochemistry secured by preparation and analysis of an MPA ester. The amino alcohol fraction from Haliclona n. sp, acts as an antifungal agent and inhibits the development of larvae of the ascidian Herdmania curvata.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 μM) and its C(18)-analogues (IC(50) <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 μM) growth of JURKAT cells.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N¿- and N¿-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the ¿-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
Monte Carlo (MC) simulations have been used to study the structure of an intermediate thermal phase of poly(R-octadecyl ç,D-glutamate). This is a comblike poly(ç-peptide) able to adopt a biphasic structure that has been described as a layered arrangement of backbone helical rods immersed in a paraffinic pool of polymethylene side chains. Simulations were performed at two different temperatures (348 and 363 K), both of them above the melting point of the paraffinic phase, using the configurational bias MC algorithm. Results indicate that layers are constituted by a side-by-side packing of 17/5 helices. The organization of the interlayer paraffinic region is described in atomistic terms by examining the torsional angles and the end-to-end distances for the octadecyl side chains. Comparison with previously reported comblike poly(â-peptide)s revealed significant differences in the organization of the alkyl side chains.
Resumo:
Chiral symmetrical alk-2-yne-1,4-diols have been stereoselectively transformed into 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin- 2-ones, which are precursors of quaternary α-amino β-hydroxy acids. The key step was the cyclization of the bis(tosylcarbamates) of 2- phenylalk-2-yne-1,4-diols, easily obtained from the starting chiral diols. These cyclizations were accomplished with complete regioselectivity and up to 92:8 dr in the presence of catalytic amounts of Ni(0) or Pd (II) derivatives under microwave heating.
Resumo:
Pyrazinoic acid esters have been synthesized as prodrugs of pyrazinoic acid. In the literature, its preparation is reported through the reaction of pyrazinoyl chloride with alcohols and the reaction with DCC/DMAP. In this work, it is reported a 2² factorial design to evaluate the preparation of these esters through the substitution of alkyl bromides with carboxylate anion. The controlled factors were alkyl chain length of bromides (ethyl and hexyl) and the used base (triethylamine and DBU). Results revealed that the used base used has significant effect on yield, and alkyl bromide used has neither significant influence, nor its interaction effect with base.