840 resultados para acidic agent
Resumo:
Objectives. The aim of this in vivo study was to evaluate the human dental pulp response when a one-bottle adhesive system was applied on etched or unetched deep dentine.Methods. Eighteen class V deep cavity preparations were divided in three groups: group 1-total etching + two coats of single bond (SB) + composite resin (Z-100); group 2-enamel etching + two coats of SB + Z-100, group 3-cavity floor lined with a calcium hydroxide liner (Dycal) + acid-etching of enamel and lateral walls + two coats of SB + Z-100. Two teeth were used as intact control group. After 30 days the teeth were extracted and processed through H and E, Masson's trichrome and Brown and Brenn staining techniques.Results. Moderate inflammatory response, disorganization of pulp tissue, as well as, deposition of thin layer of reactionary dentin were observed in group 1 teeth in which the remaining dentin thickness (RDT) was less than 300 mum. These histological findings appear to be related to long resin tags formation and bonding agent diffusion through dentinal tubules. In group 2, slight inflammatory response was observed only in one tooth in which the RDT was 162 mum. In group 3, all the teeth showed normal histological characteristics which were similar to the intact control group. Presence of bacteria was not correlated with the intensity of pulpal response. The patients reported no symptoms during the experiment. Radiographic evaluation showed no periapical pathology for any of the teeth,Significance and conclusions. Acid-etched deep dentin (RDT less than 300 mum) lined with SB causes more intense pulpal response than unetched deep dentin. Based on the results observed in the present study and the conditions in which it was carried out, we recommend the application of a biocompatible liner before etching deep dentin and applying SB. (C) 2002 Academy of Dental Materials. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.
Resumo:
The present investigation explores the adaptability of a microwave assisted route to obtain silver nanoparticles by the reduction of AgNO3 with vanillin, an environmentally benign material. Anionic surfactants such as AOT and SDS were used separately for encapsulating AgNPs and their role was compared. The UV-Visible absorption spectra present a broad SPR band consisting of two peaks suggesting the formation of silver nanoparticle with bimodal size distribution. The TEM image shows particles with spherical and hexagonal morphologies which confirms the results of UV-Vis studies. The anisotropy in the particle morphology can be attributed to the surface oxidation which in turn produces Ag@Ag2O core-shell nanostructures. Thus an intriguing feature of this system is that the obtained colloid is a mixture of AgNPs with and without Ag2O layers. Studies on the influence of pH on the stability of the synthesized nanoparticles revealed that the presence of excess Ag2O layers has a profound influence on it. Ag2O layers can be removed from AgNPs' surface by changing the solution pH to the acidic regime. The present study attests the enhanced ability of AOT in stabilizing the AgNPs in aqueous media. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
On the basis of the well-known preservative properties of Sphagnum moss, a potential opportunity to use moss polysaccharides (Sphagnan) in art conservation was tested. Polysaccharides were extracted from the moss (S. palustre spp.) in the amount of 4.1% of the Sphagnum plant dry weight. All lignocelluloses were removed from this extract as a result of the treatment of the moss cellulose with sodium chlorite. The extracted polysaccharide possessed a strong acidic reaction (pH 2.8) and was soluble in water and organic solvents. The extract was tested on laboratory bacterial cultures by the disk-diffusion method. The antibacterial effect was demonstrated for E. coli and P. aeruginosa (both gram-negative) while Staphylococcus aurelus (gram-positive) was shown to be insensitive to Sphagnum polysaccharides. The antifungal effect of Sphagnum extract was tested by the disk-diffusion method on the spores of seventeen fungal species. These fungi were isolated from ethnographic museum objects and from archaeological objects excavated in the Arctic. Twelve of these isolates appeared susceptible to the extract. The inhibiting effect of the extract was also tested by the modified broth-dilution method on the most typical isolate (Aspergillus spp.). In this experiment, in one ml of the nutritious broth, 40µl of 3% solution of polysaccharides in water killed 10,000 fungal spores in 6 hours. The inhibiting effect was not connected to the acidity or osmotic effect of Sphagnum polysaccharides. As an example of the application of Sphagnum polysaccharides in art conservation, they were added as preservative agents to conservation waxes. After three weeks of exposure of microcrystalline wax to test fungi (Aspergillus spp.), 44% of wax was consumed. When, however, ~ 0.1% (w/w) of Sphagnum extract was mixed with wax, the weight loss of wax was only 4% in the same time interval. On the basis of this study it was concluded that Sphagnum moss and Sphagnum products can be recommended for use in art conservation as antifungal agents.
The activity of ribosome modulation factor during growth of Escherichia coli under acidic conditions
Resumo:
Expression of the gene encoding ribosome modulation factor (RMF), as measured using an rmf-lacZ gene fusion, increased with decreasing pH in exponential phase cultures of Escherichia coli. Expression was inversely proportional to the growth rate and independent of the acidifying agent used and it was concluded that expression of rmf was growth rate controlled in exponential phase under acid conditions. Increased rmf expression during exponential phase was not accompanied by the formation of ribosome dimers as occurs during stationary phase. Nor did it appear to have a significant effect on cell survival under acid stress since the vulnerability of an RMF-deficient mutant strain was similar to that of the parent strain. Ribosome degradation was increased in the mutant strain compared to the parent strain at pH 3.75. Also, the peptide elongation rate was reduced in the mutant strain but not the parent during growth under acid conditions. It is speculated that the function of RMF during stress-induced reduction in growth rate is two-fold: firstly to prevent reduced elongation efficiency by inactivating surplus ribosomes and thus limiting competition for available protein synthesis factors, and secondly to protect inactivated ribosomes from degradation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An acidic (pI similar to 4.5) phospholipase A(2) (BthA-I-PLA(2)) was isolated from Bothrops jararacussu snake venom by ion-exchange chromatography on a CM-Sepharose column followed by reverse phase chromatography on an RP-HPLC C-18 column. It is an similar to13.7 kDa single chain Asp49 PLA(2) with approximately 122 amino acid residues, 7 disulfide bridges, and the following N-terminal sequence: 'SLWQFGKMINYVMJGESGVLQYLSYGCYCGLGGQGQPTDATDRCCFVHDCC(51). Crystals of this acidic protein diffracted beyond 2.0 Angstrom resolution. These crystals are monoclinic and have unit cell dimensions of a = 33.9, b = 63.8, c = 49.1 Angstrom, and beta = 104.0degrees. Although not myotoxic, cytotoxic, or lethal, the protein was catalytically 3-4 tithes more active than BthTX-II, a basic D49 myotoxic PLA(2) from the same venom and other Bothrops venoms. Although it showed no toxic activity, it was able to induce time-independent edema, this activity being inhibited by EDTA. In addition, BthA-I-PLA(2) caused a hypotensive response in the rat and inhibited platelet aggregation, Catalytic, antiplatelet and other activities were abolished by chemical modification with 4-bromophenacyl bromide, which is known to covalently bind to His48 of the catalytic site. Antibodies raised against crude B. jararacussu venom recognized this acidic PLA(2), while anti-Asp49-BthTX-II recognized it weakly and anti-Lys49-BthTX-I showed the least cross-reaction. These data confirm that myotoxicity does not necessarily correlate with catalytic activity in native PLA(2) homologues and that either of these two activities may exist alone. BthA-I-PLA(2), in addition to representing a relevant molecular model of catalytic activity, is also a promising hypotensive agent and platelet aggregation inhibitor for further studies. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H2SO4 (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. on the other hand, oxidation through dissolved oxygen takes place when concentrated H2SO4 is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H2SO4 (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H2SO4 was eliminated and advantageously replaced by a less harmful mixture of HCl and H2O2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
AIM: This in vitro study evaluated the abrasiveness of acidic fluoride (F) dentifrices with different F concentrations on bovine enamel. METHODS: Enamel blocks (4.0 x 4.0 mm2, n=120) were selected according to their surface microhardness and divided into 12 groups. Slurries of dentifrices were used containing 0 (placebo), 275, 412, 550 and 1,100 ppm F (pH 4.5 or 7.0), as well as testing two commercial dentifrices (Crest, positive control, 1,100 ppm F and Colgate Baby, 500 ppm F). Enamel blocks were partially protected with an adhesive tape (control area) and then brushed by an automated toothbrushing machine (16,000 strokes). During this process, 0.4 ml of the slurries were injected every 2 mins on the enamel blocks. After toothbrushing, enamel wear was determined by profilometry. STATISTICS: Results were analyzed by ANOVA and Tukey's test (p<0.05). RESULTS: The mean values for pH in the suspensions during treatment were 6.93, 4.32, 7.56 and 8.19 for neutral experimental dentifrices, acidic experimental dentifrices, Crest and Colgate baby, respectively. The abrasiveness of the acidic dentifrices was similar (p<0.05) to the neutral ones, whereas commercial dentifrices yielded lower abrasion (p<0.05). CONCLUSION: It was concluded that a reduction of the pH of dentifrices does not increase their abrasiveness.
Resumo:
Tiefes Wissen über den Ceramid Stoffwechsel ist rudimentär für das Verständnis der Haut-Pathophysiologie (z.B. für atopische Dermatitis oder Psoriasis ) und unabdingbar für gezielte Therapieansätze. Wenn die zwei wichtigen Barriere Funktionen, gegen transepidermalen Wasserverlust und Pathogene Invasionen undicht werden, sind bestimmte Barriere Komponenten wie z.B. Ceramide stark verändert. In Haut und Hoden führt die Deletion der Ceramid-Synthase 3 zu einem Arrest der epidermalen Reifung und der Spermatogenese, welches ihre Bedeutung für eine intakte Barriere heraushebt. Sphingosin (So), ein Abbauprodukt von Cer, wurde als antimikrobielles Mittel identifiziert. So konnte das Wachstum von Candida albicans hemmen und die Invasion von Pathogenen in tiefere Hautschichten verringern, wodurch ihre mögliche Rolle in der Therapie von Hauterkrankungen gezeigt wurde. Auch eine neue Klasse von Ceramiden, die 1-O-acylceramide, wurde entdeckt. 1-O-acylceramide könnten zu einer funktionellen Wasserdurchlässigkeit Barriere beitragen, da sie zu den hydrophobesten der epidermalen Cers gehören. Die neutrale Glucosylceramidase scheint topologisch mit der 1-Oacylceramid Produktion verbunden zu sein, sowie die Enzyme der Diacylglycerol O-Acyltransferase-2 (DGAT2) Familie eine Rolle dabei spielen könnten. Die Identifizierung der für die 1-O-acylceramid Synthese verantwortlichen Enzyme wir Gegenstand weiterer Forschung sein, jedoch zeigten Untersuchungen an Mäusen, defizient für die saure Ceramidase (Farber-Krankheit), dass Makrophagen ein weiterer potenzieller Produktionsort sein könnten.
Resumo:
The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Reaction of the normal isomer of [B20H18]2− and the protected thiol anion, [SC(O)OC(CH3)3]−, produces an unexpected isomer of [B20H17SC(O)OC(CH3)3]4− directly and in good yield. The isomer produced under mild conditions is characterized by an apical–apical boron atom intercage connection as well as the location of the thiol substituent on an equatorial belt adjacent to the terminal boron apex. Although the formation of this isomer from nucleophilic attack of the normal isomer of [B20H18]2− has not been reported previously, the isomeric assignment has been unambiguously confirmed by one-dimensional and two-dimensional 11B NMR spectroscopy. Deprotection of the thiol substituent under acidic conditions produces a protonated intermediate, [B20H18SH]3−, which can be deprotonated with a suitable base to yield the desired product, [B20H17SH]4−. The sodium salt of the resulting [B20H17SH]4− ion has been encapsulated in small, unilamellar liposomes, which are capable of delivering their contents selectively to tumors in vivo, and investigated as a potential agent for boron neutron capture therapy. The biodistribution of boron was determined after intravenous injection of the liposomal suspension into BALB/c mice bearing EMT6 mammary adenocarcinoma. At low injected doses, the tumor boron concentration increased throughout the time-course experiment, resulting in a maximum observed boron concentration of 46.7 μg of B per g of tumor at 48 h and a tumor to blood boron ratio of 7.7. The boron concentration obtained in the tumor corresponds to 22.2% injected dose (i.d.) per g of tissue, a value analogous to the most promising polyhedral borane anions investigated for liposomal delivery and subsequent application in boron neutron capture therapy.
Resumo:
The infectious agent of transmissible spongiform encephalopathies is believed to consist of an oligomeric isoform, PrPSc, of the monomeric cellular prion protein, PrPC. The conversion of PrPC to PrPSc is characterized by a decrease in α-helical structure, an increase in β-sheet content, and the formation of PrPSc amyloid. Whereas the N-terminal part of PrPC comprising residues 23–120 is flexibly disordered, its C-terminal part, PrP(121–231), forms a globular domain with three α-helices and a small β-sheet. Because the segment of residues 90–231 is protease-resistant in PrPSc, it is most likely structured in the PrPSc form. The conformational change of the segment containing residues 90–120 thus constitutes the minimal structural difference between PrPC and a PrPSc monomer. To test whether PrP(121–231) is also capable to undergo conformational transitions, we analyzed its urea-dependent unfolding transitions at neutral and acidic pH. We identified an equilibrium unfolding intermediate of PrP(121–231) that is exclusively populated at acidic pH and shows spectral characteristics of a β-sheet protein. The intermediate is in rapid equilibrium with native PrP(121–231), significantly populated in the absence of urea at pH 4.0, and may have important implications for the presumed formation of PrPSc during endocytosis.